【題目】如圖,在△ABC中,點(diǎn)D是邊AB的四等分點(diǎn),DE∥AC,DF∥BC,AC=8,BC=12,求四邊形DECF的周長(zhǎng).

【答案】解:∵DE∥AC,DF∥BC, ∴四邊形DFCE是平行四邊形,
∴DE=FC,DF=EC
∵DF∥BC,
∴△ADF∽△ABC,
,
∵AC=8,BC=12,
∴AF=2,DF=3
∴FC=AC﹣AF=8﹣2=6,
∴DE=FC=6,DF=EC=3
∴四邊形DECF的周長(zhǎng)是DF+CF+CE+DE=3+6+3+6=18.
答:四邊形DECF的周長(zhǎng)是18
【解析】根據(jù)平行四邊形的判定得出四邊形DFCE是平行四邊形,證△ADF∽△ABC,得出 ,代入求出DF、AE即可求出答案.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用平行線分線段成比例,掌握三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1
②畫(huà)出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A2B2C2;

(2)求△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生會(huì)為了解本校初中學(xué)生每天做作業(yè)所用時(shí)間情況,采用問(wèn)卷的方式對(duì)一部分學(xué)生進(jìn)行調(diào)查.在確定調(diào)查對(duì)象時(shí),大家提出以下幾種方案:A.對(duì)各班班長(zhǎng)進(jìn)行調(diào)查;B.對(duì)某班的全體學(xué)生進(jìn)行調(diào)查;C.從全校每班隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查.在問(wèn)卷調(diào)查時(shí),每位被調(diào)查的學(xué)生都選擇了問(wèn)卷中適合自己的一個(gè)時(shí)間,學(xué)生會(huì)將收集到的數(shù)據(jù)整理后繪制成如圖所示的條形統(tǒng)計(jì)圖.

(1)為了使收集到的數(shù)據(jù)具有代表性.學(xué)生會(huì)在確定調(diào)查對(duì)象時(shí)應(yīng)選擇方案________ (A,BC);

(2)被調(diào)查的學(xué)生每天做作業(yè)所用時(shí)間的眾數(shù)為________h;

(3)根據(jù)以上統(tǒng)計(jì)結(jié)果,估計(jì)該校900名初中學(xué)生中每天做作業(yè)用1.5 h的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,連接DH,求證:

(1)EH=FH;
(2)∠CAB=2∠CDH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高速鐵路工程指揮部,要對(duì)某路段工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的投標(biāo)書(shū).從投標(biāo)書(shū)中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的:若由甲隊(duì)先做20天,剩下的工程再由甲、乙兩隊(duì)合作60天完成.

(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

(2)已知甲隊(duì)每天的施工費(fèi)用為8.6萬(wàn)元,乙隊(duì)每天的施工費(fèi)用為5.4萬(wàn)元,工程預(yù)算的施工費(fèi)用為1000萬(wàn)元.若在甲、乙工程隊(duì)工作效率不變的情況下使施工時(shí)間最短,問(wèn)擬安排預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:

①AD=BE;②PQ∥AE③AP=BQ;④DE=DP; ⑤∠AOB=60°

其中正確的結(jié)論的個(gè)數(shù)是( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線與BC的延長(zhǎng)線交于點(diǎn)E,與DC交于點(diǎn)F.

(1)求證:CD=BE;

(2)若AB=4,點(diǎn)F為DC的中點(diǎn),DG⊥AE,垂足為G,且DG=1,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案