已知拋物線與軸交于點(diǎn),點(diǎn)是拋物線上的點(diǎn),且滿足∥軸,點(diǎn)是拋物線的頂點(diǎn).
(1)求拋物線的對(duì)稱軸及點(diǎn)坐標(biāo);
(2)若拋物線經(jīng)過點(diǎn),求拋物線的表達(dá)式;
(3)對(duì)(2)中的拋物線,點(diǎn)在線段上,若以點(diǎn)、、為頂點(diǎn)的三角形與相似,試求點(diǎn)的坐標(biāo).
(1)
(2)
(3)點(diǎn)的坐標(biāo)為或
【解析】解(1)由題意得,,∴對(duì)稱軸為直線;…………………(2分)
∵點(diǎn),點(diǎn)是拋物線上的點(diǎn),∥軸,
∴被直線垂直平分,∴.………………………………………(1分)
(2)∵拋物線經(jīng)過點(diǎn),,所以有,……………(2分)
解得,∴拋物線的表達(dá)式為.………………………(1分)
(3)∵拋物線的對(duì)稱軸為直線,∴,…………………………(1分)
過點(diǎn)作軸,垂足為點(diǎn),設(shè)對(duì)稱軸與交于點(diǎn).……………(1分)
∵∥軸,∴,∴,
又∵,,∴,∴∽,…………(1分)
∴,………………………………………………………………(1分)
當(dāng)∽時(shí),有,
∵,∴,∴;…………………(1分)
當(dāng)∽時(shí),有,
∴,∴,………………………………………………………(1分)
綜上所述滿足條件的點(diǎn)的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,已知拋物線與軸交于點(diǎn)、(點(diǎn)在點(diǎn)的左側(cè)),與軸的正半軸交于點(diǎn),頂點(diǎn)為.
(Ⅰ)若,,求此時(shí)拋物線頂點(diǎn)的坐標(biāo);
(Ⅱ)將(Ⅰ)中的拋物線向下平移,若平移后,在四邊形ABEC中滿足
S△BCE = S△ABC,求此時(shí)直線的解析式;
(Ⅲ)將(Ⅰ)中的拋物線作適當(dāng)?shù)钠揭,若平移后,在四邊?i>ABEC中滿足
S△BCE = 2S△AOC,且頂點(diǎn)恰好落在直線上,求此時(shí)拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線與軸交于點(diǎn),,與y軸交于點(diǎn).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交軸于點(diǎn)E.在線段OB的垂直平分線上是否存在點(diǎn)P,使得點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線與軸交于點(diǎn),且經(jīng)過兩點(diǎn),點(diǎn)是拋物線頂點(diǎn),是對(duì)稱軸與直線的交點(diǎn),與關(guān)于點(diǎn)對(duì)稱.
(1)求拋物線的解析式;
(2)求證:;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn),使與相似.若有,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若沒有,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com