某塊試驗田里的農(nóng)作物每天的需水量y(千克)與生長時間x(天)之間的關系如折線圖所示.這些農(nóng)作物在第10天、第30天的需水量分別為2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.
(1)分別求出x≤40和x≥40時y與x之間的關系式;
(2)如果這些農(nóng)作物每天的需水量大于或等于4000千克時需要進行人工灌溉,那么應從第幾天開始進行人工灌溉?
(1)當x≤40時,設y=kx+b.
根據(jù)題意,得
2000=10k+b
3000=30k+b

解這個方程組,得
k=50
b=1500

∴當x≤40時,y與x之間的關系式是y=50x+1500;(4分)
∴當x=40時,y=50×40+1500=3500;
當x≥40時,根據(jù)題意,得y=100(x-40)+3500,即y=100x-500.
∴當x≥40時,y與x之間的關系式是y=100x-500.(6分)

(2)當y≥4000時,y與x之間的關系式是y=100x-500.
解不等式100x-500≥4000.
得x≥45.
∴應從第45天開始進行人工灌溉.(8分)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

小剛和小強在一條由西向東的公路上行走,出發(fā)時間相同,小強從A出發(fā),小剛從A往東100米的B處出發(fā),兩人到達C地后都停止.設兩人行走x分鐘后,小強、小剛離B的距離分別為y1、y2(m),y1、y2與x的函數(shù)關系如圖所示:
(1)根據(jù)圖象可得:A、C兩地間的距離為______m;
(2)求a的值;
(3)求圖中點P的坐標,并解釋該點坐標所表示的實際意義.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某實驗大棚的一種花草每天的需水量y(千克)與生長時間x(天)之間的關系如折線圖所示.這些花草在第5天、第15天的需水量分別為1000千克、1500千克,在第20天后每天的需水量比前一天增加90千克.
(1)分別求出x≤20和x>20時,y與x之間的關系式;
(2)如果這些花草每天的需水量大于或等于2200千克時需要進行人工澆灌,那么應從第幾天開始進行人工澆灌?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一根蠟燭長20cm,點燃后每小時燃5cm,則剩下長度y(cm)與燃燒時間t(小時)之間的函數(shù)關系可用下列哪個圖象表示( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,Rt△AOC的直角邊OC在y軸正半軸,且頂點O與坐標原點重合,點A的坐標為(2,4),直線y=-x+b過點A,與x軸交點B.

(1)點B的坐標為______.
(2)動點P從點O出發(fā),以每秒1個單位長的速度,沿O-C-A的路線向點A運動,同時動點M從點B出發(fā),以相同的速度沿BO的方向向O運動,過點M作MQ⊥x軸,交線段BA或線段AO于點Q,當點P到達A點時,點P和點M都停止運動.在運動過程中,設動點P運動的時間為t秒.
①設△APQ的面積為S,求S關于t的函數(shù)關系式;
②是否存在以M、P、Q為頂點的三角形的面積與S相等?若存在,求t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線y=-
4
3
x+12
與x軸交于點A,與y軸交于點B,動點P從點A出發(fā)沿折線AO-OB-BA運動,點P在AO、OB、BA上運動的速度分別為每秒3個單位長度、4個單位長度、5個單位長度,直線l從與x軸重合的位置出發(fā),以每秒
4
3
個單位長度的速度沿y軸向上平移,移動過程中直線l分別與直線OB、AB交于點E、F,若點P與直線l同時出發(fā),當點P沿折線AO-OB-BA運動一周回到點A時,直線l和點P同時停止運動,設運動時間為t秒,請解答下列問題:
(1)求A、B兩點的坐標;
(2)當t為何值時,點P與點E重合?
(3)當t為何值時,點P與點F重合?
(4)當點P在AO-OB上,且點P、E、F不在同一直線上時,設△PEF的面積為S,請直接寫出S關于t的函數(shù)解析式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店計劃購進某型號的螺絲、螺母進行銷售,有關信息如下表:
原進價(元/個)零售價(元/個)成套售價(元/套)
螺絲a1.02.0
螺母a-0.30.62.0
(1)已知用50元購進螺絲的數(shù)量與用20元購進螺母的數(shù)量相同,求表中a的值;
(2)若該店購進螺母數(shù)量是螺絲數(shù)量的3倍還多200個,且兩種配件的總量不超過3000個.
①該店計劃將一半的螺絲配套(一個螺絲和兩個螺母配成一套)銷售,其余螺絲、螺母以零售方式銷售.請問:怎樣進貨,才能獲得最大利潤?最大利潤是多少?(用含a的代數(shù)式表示)
②由于原材料價格上漲,每個螺絲和螺母的進價都上漲了0.1元.按照①中的最佳進貨方案,在銷售價不變的情況下,全部售出后,所得利潤比①少了260元,請問本次成套的銷售量為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某地區(qū)由于持續(xù)高溫和連日無雨,水庫蓄水量普遍下降.某水庫的蓄水量V(萬立方米)與干旱持續(xù)時間t(天)是一次函數(shù)關系,如圖所示.
(1)求V與t之間的函數(shù)關系式;
(2)該水庫原蓄水量為多少萬立方米?
(3)如果持續(xù)干旱40天后,水庫蓄水量為多少萬立方米?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在購買某場足球賽門票時,設購買門票數(shù)為x(張),總費用為y(元).現(xiàn)有兩種購買方案:
方案一:若單位贊助廣告費10000元,則該單位所購門票的價格為每張60元;(總費用=廣告贊助費+門票費)
方案二:購買門票方式如圖所示.解答下列問題:
(1)方案一中,y與x的函數(shù)關系式為______;方案二中,當0≤x≤100時,y與x的函數(shù)關系式為______;當x>100時,y與x的函數(shù)關系式為______;
(2)如果購買本場足球賽超過100張,你將選擇哪一種方案,使總費用最?請說明理由;
(3)甲、乙兩單位分別采用方案一、方案二購買本場足球賽門票共700張,花去總費用計58 000元,求甲、乙兩單位各購買門票多少張?

查看答案和解析>>

同步練習冊答案