閱讀下列材料:
問題:如圖1,在正方形ABCD內(nèi)有一點P,PA=,PB=,PC=1,求∠BPC的度數(shù).
小明同學的想法是:已知條件比較分散,可以通過旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是他將△BPC繞點B逆時針旋轉(zhuǎn)90°,得到了△BP′A(如圖2),然后連結(jié)PP′.
請你參考小明同學的思路,解決下列問題:
(1) 圖2中∠BPC的度數(shù)為      ;
(2) 如圖3,若在正六邊形ABCDEF內(nèi)有一點P,且PA=,PB=4,PC=2,則∠BPC的度數(shù)為       ,正六邊形ABCDEF的邊長為      

圖1                       圖2                    圖3

解:(1)135°;
(2)120°; .

解析

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料:
問題:現(xiàn)有5個邊長為1的正方形,排列形式如圖①,請把它們分割后拼接成一個新的正方形,要求:畫出分割線并在正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.
小東同學的做法是:設(shè)新正方形的邊長為x(x>0),依題意,割補前后圖形的面積相等,有x2=5,解得x=
5
,由此可知新正方形得邊長等于兩個小正方形組成得矩形對角線得長,于是,畫出如圖②所示的分割線,拼出如圖③所示的新正方形.精英家教網(wǎng)
請你參考小東同學的做法,解決如下問題:
現(xiàn)有10個邊長為1的正方形,排列形式如圖④,請把它們分割后拼接成一個新的正方形,要求:在圖④中畫出分割線,并在圖⑤的正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.(說明:直接畫出圖形,不要求寫分析過程.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

25、請閱讀下列材料:
問題:如圖,在正方形ABCD和平行四邊形BEFG中,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC.
探究:當PG與PC的夾角為多少度時,平行四邊形BEFG是正方形?
小聰同學的思路是:首先可以說明四邊形BEFG是矩形;然后延長GP交DC于點H,構(gòu)造全等三角形,經(jīng)過推理可以探索出問題的答案.
請你參考小聰同學的思路,探究并解決這個問題.
(1)求證:四邊形BEFG是矩形;
(2)PG與PC的夾角為
90
度時,四邊形BEFG是正方形.
理由:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:
 
;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實數(shù)根,求一個一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•新鄉(xiāng)模擬)閱讀下列材料:問題:如圖1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC,探究PG與PC的位置關(guān)系
小穎同學的思路是:延長GP交DC于點H,構(gòu)造全等三角形,經(jīng)過推理使問題得到解決.
請你參考小穎同學的思路,探究并解決下列問題:
(1)請你寫出上面問題中線段PG與PC的位置關(guān)系;
(2)將圖1中的菱形BEFG繞點B順時針旋轉(zhuǎn),使菱形BEFG的對角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題申的其他條件不變(如圖2).你在(1)中得到的結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料:問題:現(xiàn)有5分邊長為1的正方形,排列形式如圖1,請把它們分割后拼接成一個新的正方形.要求:畫出分割線并在正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中畫出拼接成的新正方形.
小東同學的做法是:設(shè)新正方形的邊長為x(x>0),依題意,割補前后圖形的面積相等,有x2=5,解得x=
5
,由此可知新正方形的邊長等于兩個小正方形組成的矩形對角線長,于是,畫出如圖2所示的分割線,拼出如圖3所示的新正方形.
請你參考小東的做法,解決以下問題.要求:在圖4中畫出分割線,并在圖5的正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中畫出拼接的新正方形.(說明:直接畫出圖形,不要求寫分析過程)

查看答案和解析>>

同步練習冊答案