【題目】在平行四邊形ABCD中,過點A作AEBC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且AFE=B.

(1)求證:ADF∽△DEC;

(2)若AB=4,AD=3,AE=3,求AF的長.

【答案】(1)、證明過程見解析;(2)、2

【解析】

試題分析:(1)、根據(jù)平行四邊形的性質(zhì)得出ADF=CED,B+C=180°,結(jié)合AFE+AFD=180°,AFE=B,得出AFD=C,從而得出三角形相似;(2)、根據(jù)勾股定理得出DE的長度,然后根據(jù)ADF和DEC相似得出答案.

試題解析:(1)、四邊形ABCD是平行四邊形,ADBC,ABCD, ∴∠ADF=CED,B+C=180°;

∵∠AFE+AFD=180°,AFE=B,∴∠AFD=C, ∴△ADF∽△DEC;

(2)、CD=AB=4,AEBC,AEAD; 在RtADE中,DE=,

∵△ADF∽△DEC, ,解得AF=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

A. 整數(shù)就是正整數(shù)和負整數(shù) B. 分數(shù)包括正分數(shù)和負分數(shù)

C. 在有理數(shù)中,不是負數(shù)就是正數(shù) D. 零是整數(shù),但不是自然數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:x2-3x+2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)是(0,3).點B在x軸上.將AOB繞點A逆時針旋轉(zhuǎn)90°得到AEF,點0,B對應(yīng)點分別是E,F(xiàn)。

(1)、若點B的坐標(biāo)是(-4,0),請在圖中畫出AEF,并寫出點E.F的坐標(biāo);

(2)、依此旋轉(zhuǎn),若要點F落在x軸上方時,試寫出一個符合條件的點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】運用等式性質(zhì)進行的變形,不正確的是(
A.如果a=b,那么a﹣c=b﹣c
B.如果a=b,那么a+c=b+c
C.如果a=b,那么ac=bc
D.如果ac=bc,那么a=b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC≌△DEF,且ABC的三邊長分別為3,4,5,則DEF的周長為 ________ cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191月至8月,某市汽車產(chǎn)量為80萬輛,其中80萬用科學(xué)記數(shù)法表示為(  )

A.8×104B.0.8×105C.8×106D.8×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題的個數(shù)(

(1)O的半徑為5,點P在直線l上,且OP=5,則直線l與O相切

(2)在RtABC中,C=90°,AC=5,BC=12,則ABC的外接圓半徑為6.5

(3)正多邊形都是軸對稱圖形,也都是中心對稱圖形

(4)三角形的外心到三角形各邊的距離相等.

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OF平分∠AOE,OF⊥CD,垂足為O.
(1)寫出圖中所有與∠AOD互補的角;
(2)若∠AOE=120°,求∠BOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案