【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結論:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE , 其中正確結論有( )
A.2個
B.3個
C.4個
D.5個
【答案】C
【解析】解:∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等邊三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,
,
Rt△ABE≌Rt△ADF(HL),
∴BE=DF(故①正確).
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°(故②正確),
∵BC=CD,
∴BC﹣BE=CD﹣DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故③正確).
設EC=x,由勾股定理,得
EF= x,CG= x,
AG=AEsin60°=EFsin60°=2×CGsin60°= x,
∴AC= ,
∴AB= ,
∴BE= ﹣x= ,
∴BE+DF= x﹣x≠ x,(故④錯誤),
∵S△CEF= x2,
S△ABE= x2,
∴2S△ABE= x2=S△CEF,(故⑤正確).
綜上所述,正確的有4個,
故選:C.
通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,設EC=x,BE=y,由勾股定理就可以得出x與y的關系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和2S△ABE,再通過比較大小就可以得出結論.
科目:初中數(shù)學 來源: 題型:
【題目】在“母親節(jié)”期間,某校部分團員準備購進一批“康乃馨”進行銷售,并將所得利潤捐給貧困同學的母親.根據(jù)市場調(diào)查,這種“康乃馨”的銷售量y(枝)與銷售單價x(元/枝)之間成一次函數(shù)關系,它的部分圖象如圖.
(1)試求y與x之間的函數(shù)關系式;
(2)若“康乃馨”的進價為5元/枝,且要求每枝的銷售盈利不少于1元,問:在此次活動中,他們最多可購進多少數(shù)量的康乃馨?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(7分)如圖所示,O是直線AB上一點,∠AOC=∠BOC,OC是∠AOD的平分線.
(1)求∠COD的度數(shù).
(2)判斷OD與AB的位置關系,并說出理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線a:y=x+2和直線b:y=﹣x+4相交于點A,分別與x軸相交于點B和點C,與y軸相交于點D和點E.
(1)求△ABC的面積;
(2)求四邊形ADOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明是個愛動腦筋的學生,在學習了解直角三角形以后,一天他去測量學校的旗桿DF的高度,此時過旗桿的頂點F的陽光剛好過身高DE為1.6米的小明的頭頂且在他身后形成的影長DC=2米.
(1)若旗桿的高度FG是a米,用含a的代數(shù)式表示DG.
(2)小明從點C后退6米在A的測得旗桿頂點F的仰角為30°,求旗桿FG的高度.(點A、C、D、G在一條直線上,,結果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx-3(a≠0)的圖象經(jīng)過點(1,3),則代數(shù)式1-a-b的值為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,99999×11=1099989,99999×12=1199988,99999×13=1299987,99999×14=1399986,那么,99999×20= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com