我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發(fā)現(xiàn)直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算.解答過程如下:

原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(24-1)(24+1)(28+1)(216+1)(232+1)

=……=264-1

你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!

綜合提高

 

【答案】

(332-1)

【解析】

試題分析:在算式前乘以(3-1),但3-1=2,故還要乘,使原算式的值不變,再依次根據(jù)平方差公式計算即可。

原式=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)

=(32-1)(32+1)(34+1)(38+1)(316+1)

=(34-1)(34+1)(38+1)(316+1)

=(38-1)(38+1)(316+1)

=(316-1)(316+1)

=(332-1).

考點:本題考查的是平方差公式的應用

點評:使用平方差公式去括號的關鍵是要找相同項和相反項,其結果是相同項的平方減去相反項的平方.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面材料:
在計算1+4+7+10+13+16+19+22+25+28時,我們發(fā)現(xiàn),從第一個數(shù)開始,以后的每個數(shù)與它的前一個數(shù)的差都是一個相同的定值,具有這種規(guī)律的一列數(shù),求和時,除了直接相加外,我們還可以用公式S=na+
n(n-1)
2
×d
來計算(公式中的S表示它們的和,n表示數(shù)的個數(shù),a表示第一個數(shù)的值,d表示這個相差的定值).那么S=1+4+7+10+13+16+19+22+25+28=10×1+
10(10-1)
2
×3
=145.
用上面的知識解決下列問題:
我市某鄉(xiāng)鎮(zhèn)具有“中國北方喬木之鄉(xiāng)”的美稱,到2000年底這個鎮(zhèn)已有苗木2萬畝,為增加農(nóng)民收入,這個鎮(zhèn)實施“苗木興鎮(zhèn)”戰(zhàn)略,逐年有計劃地擴種苗木.從2001年起,以后每年又比上一年多種植相同面積的苗木;從2001年起每年賣出成苗木,以后每年又比上一年多賣出相同面積的苗木.下表為2001年、2002年、2003年三年種植苗木與賣出成苗木的面積統(tǒng)計數(shù)據(jù).
年份 2001年 2002年 2003年
每年種植苗木的面積(畝) 4000 5000 6000
每年賣出成苗木的面積(畝) 2000 2500 3000
假設所有苗木的成活率都是100%,問到哪一年年底,這個鎮(zhèn)的苗木面積達到5萬畝?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在計算l+4+7+10+13+16+19+22+25+28時,我們發(fā)現(xiàn),從第一個數(shù)開始,后面的每個數(shù)與它的前面一個數(shù)的差都是一個相等的常數(shù),具有這種規(guī)律的一列數(shù),除了直接相加外,我們還可以用下列公式來求和S,S=
n(a1+an)
2
(其中n表示數(shù)的個數(shù),a1表示第一個數(shù),an表示最后一個數(shù)),所以1+4+7+10+r3+16+19+22+25+28=
10×(1+28)
2
=145.
用上面的知識解答下面問題:某公司對外招商承包一分公司,符合條件的兩企業(yè)A、B分別擬定上繳利潤方案如下:
A:每年結算一次上繳利潤,第一年上繳1.5萬元,以后每年比前一年增加l萬元;
B:每半年結算一次上繳利潤,第一個半年上繳0.3萬元,以后每半年比前半年增加0.3萬元;
(1)如果承包期限4年,請你通過計算,判斷哪家企業(yè)上繳利潤的總金額多?
(2)如果承包期限為n年,試用n的代數(shù)式分別表示兩企業(yè)上繳利潤的總金額(單位:萬元);
(3)承包期限n至少是
 
年,B企業(yè)上繳利潤的總金額超過A企業(yè)上繳利潤的總金額.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們通過計算發(fā)現(xiàn):拋物線y=x2+2x-1的頂點(-1,-2)在拋物線y=-x2+2x+1上,同時拋物線y=-x2+2x+1的頂點(1,2)也在拋物線y=x2+2x-1上,這時我們稱這兩條拋物線是相關的.
(1)問:拋物線y=x2-2x-1與拋物線y=-x2-2x+1是否相關,并說明理由.
(2)如圖,已知拋物線C:y=
18
(x+1)2-2,頂點為M.
①若有一動點P的坐標為(m,2),現(xiàn)將拋物線C繞點P(m,2)旋轉180°得到新的拋物線C′,且拋物線C與新的拋物線C′相關,求拋物線C′的解析式.
②若拋物線C′與C相關,頂點為N,現(xiàn)以MN為斜邊作等腰直角△MNQ,問y軸上是否存在滿足要求的點Q?若存在,求出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案