已知,大正方形的邊長(zhǎng)為4,小正方形的邊長(zhǎng)為2,狀態(tài)如圖所示.大正方形固定不動(dòng),把小正方形以的速度向大正方形的內(nèi)部沿直線平移,設(shè)平移的時(shí)間為秒,兩個(gè)正方形重疊部分的面積為,完成下列問(wèn)題:

(1).用的式子表示,要求畫出相應(yīng)的圖形,表明的范圍;

(2).當(dāng),求重疊部分的面積

(3).當(dāng),求的值.


(1).如圖1,當(dāng)如圖2,當(dāng)如圖3,當(dāng)

(2).當(dāng)時(shí)

答:重疊部分的面積為3

(3).當(dāng)     

答:的值為1.8或4.2


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,已知拋物線y1=﹣2x2+2,直線y2=﹣2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較大值記為M;若y1=y2,記M=y1=y2。例如:當(dāng)x=﹣1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=4。下列判斷:

①當(dāng)x<0時(shí),y1>y2;

②當(dāng)x>0時(shí),x值越大,M值越;

③當(dāng)x≥0時(shí),使得M大于2的x值不存在;

④使得M=1的x值是。

其中正確的有【    】

  A.1個(gè)  B.2個(gè)  C.3個(gè)  D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,已知⊙B與△ABD的邊AD相切于點(diǎn)C,AC=,⊙B的半徑為2,當(dāng)⊙A與⊙B相切時(shí),⊙A的半徑是【   】

      1      3      2或4        1或3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知A,B,C為⊙O上相鄰的三個(gè)六等分點(diǎn),點(diǎn)E在劣弧AC上(不與A,B,C重合),EF

為⊙O的直徑,將⊙O沿EF折疊,使點(diǎn)A與A′重合,點(diǎn)B與B′重合,連接EB′,EC,EA′。設(shè)EB′=b,EC=c,EA′=p。試探究b,c,p三者的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


定義:如果一個(gè)y與x的函數(shù)圖象經(jīng)過(guò)平移后能與某反比例函數(shù)的圖象重合,那么稱這個(gè)函數(shù)是y與x的“反比例平移函數(shù)”.例如:的圖象向左平移2個(gè)單位,再向下平移1個(gè)單位得到的圖象,則是y與x的“反比例平移函數(shù)”.

(1)若矩形的兩邊分別是2cm、3cm,當(dāng)這兩邊分別增加x(cm)、y(cm)后,得到的新矩形的面積為8cm2,求y與x的函數(shù)表達(dá)式,并判斷這個(gè)函數(shù)是否為“反比例平移函數(shù)”.

(2)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(9,0)、(0,3).點(diǎn)D是OA的中點(diǎn),連接OB、CD交于點(diǎn)E,“反比例平移函數(shù)”的圖象經(jīng)過(guò)B、E兩點(diǎn).則這個(gè)“反比例平移函數(shù)”的表達(dá)式為            ;這個(gè)“反比例平移函數(shù)”的圖象經(jīng)過(guò)適當(dāng)?shù)淖儞Q與某一個(gè)反比例函數(shù)的圖象重合,請(qǐng)寫出這個(gè)反比例函數(shù)的表達(dá)式.

(3)在(2)的條件下,已知過(guò)線段BE中點(diǎn)的一條直線l交這個(gè)“反比例平移函數(shù)”圖象于P、Q兩點(diǎn)(P在Q的右側(cè)),若B、E、P、Q為頂點(diǎn)組成的四邊形面積為16,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


根據(jù)要求,解答下列問(wèn)題:

(1)已知直線l1的函數(shù)表達(dá)式為,直接寫出:①過(guò)原點(diǎn)且與l1垂直的直線l2的函數(shù)表達(dá)式;②過(guò)點(diǎn)(1,0)且與l1垂直的直線l2的函數(shù)表達(dá)式;

(2)如圖,過(guò)點(diǎn)(1,0)的直線l4向上的方向與x軸的正方向所成的角為600,①求直線l4的函數(shù)表達(dá)式;②把直線l4繞點(diǎn)(1,0)按逆時(shí)針方向旋轉(zhuǎn)900得到的直線l5,求直線l5的函數(shù)表達(dá)式;

(3)分別觀察(1)(2)中的兩個(gè)函數(shù)表達(dá)式,請(qǐng)猜想:當(dāng)兩直線垂直時(shí),它們的函數(shù)表達(dá)式中自變量的系數(shù)之間有何關(guān)系?請(qǐng)根據(jù)猜想結(jié)論直接寫出過(guò)點(diǎn)(1,1)且與直線垂直的直線l6的函數(shù)表達(dá)式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在正方形ABCD中,AB=4cm,動(dòng)點(diǎn)M從A出發(fā),以1cm/s的速度沿折線AB﹣BC運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從A出發(fā),以2cm/s的速度沿折線AD﹣DC﹣CB運(yùn)動(dòng),M,N第一次相遇時(shí)同時(shí)停止運(yùn)動(dòng).設(shè)△AMN的面積為y,運(yùn)動(dòng)時(shí)間為x,則下列圖象中能大致反映y與x的函數(shù)關(guān)系的是(  )

A.    B.    C.    D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 如圖,平面之間坐標(biāo)系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=,經(jīng)過(guò)O,C兩點(diǎn)做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A       ,k=       ;

(2)隨著三角板的滑動(dòng),當(dāng)a=1時(shí):

①請(qǐng)你驗(yàn)證:拋物的頂點(diǎn)在函數(shù)的圖象上;

②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是拋物線上的一個(gè)動(dòng)點(diǎn),拋物線的對(duì)稱軸與x軸交于點(diǎn)D,經(jīng)過(guò)點(diǎn)P的直線PE與y軸交于點(diǎn)E,是否存在△OPE與△OPD全等?若存在,請(qǐng)求出直線PE的解析式;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案