當(dāng)k分別。1,1,2時(shí),函數(shù)y=(k-1)x2-4x+5-k都有最大值嗎?請(qǐng)寫出你的判斷,并說明理由;若有,請(qǐng)求出最大值.

有最大值,8

解析解:(1)當(dāng)k=1時(shí),函數(shù)為y=-4x+4,是一次函數(shù)(直線),無最值;
(2)當(dāng)k=2時(shí),函數(shù)y=x2-4x+3,為二次函數(shù),此函數(shù)開口向上,只有最小值而無最大值;
(3)當(dāng)k=-1時(shí),函數(shù)為y=-2x2-4x+6,為二次函數(shù),此函數(shù)開口向下,有最大值.
因?yàn)閥=-2x2-4x+6=-2(x+1)2+8,則當(dāng)x=-1時(shí),函數(shù)有最大值為8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=x2+2ax-2.
(1)求證:經(jīng)過點(diǎn)(0,)且與x軸平行的直線與該函數(shù)的圖象總有兩個(gè)公共點(diǎn);
(2)該函數(shù)和y=-x2+(a-3)x+的圖象都經(jīng)過x軸上兩個(gè)不同的點(diǎn)A、B,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),拋物線經(jīng)過點(diǎn)A(6,0),且頂點(diǎn)B(m,6)在直線上.
(1)求m的值和拋物線的解析式;
(2)如在線段OB上有一點(diǎn)C,滿足,在x軸上有一點(diǎn)D(10,0),連接DC,且直線DC與y軸交于點(diǎn)E.
①求直線DC的解析式;
②如點(diǎn)M是直線DC上的一個(gè)動(dòng)點(diǎn),在x軸上方的平面內(nèi)有另一點(diǎn)N,且以O(shè)、E、M、N為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫出點(diǎn)N的坐標(biāo).
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖(1),直線與x軸交于點(diǎn)A、與y軸交于點(diǎn)D,以AD為腰,以x軸為底作等腰梯形ABCD(AB>CD),且等腰梯形的面積是8,拋物線經(jīng)過等腰梯形的四個(gè)頂點(diǎn).

圖(1)
(1) 求拋物線的解析式;
(2) 如圖(2)若點(diǎn)P為BC上的—個(gè)動(dòng)點(diǎn)(與B、C不重合),以P為圓心,BP長(zhǎng)為半徑作圓,與軸的另一個(gè)交點(diǎn)為E,作EF⊥AD,垂足為F,請(qǐng)判斷EF與⊙P的位置關(guān)系,并給以證明;

圖(2)
(3) 在(2)的條件下,是否存在點(diǎn)P,使⊙P與y軸相切,如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(-2,4),過點(diǎn)A作AB⊥y軸,垂足為B,連接OA.

(1)求△OAB的面積;
(2)若拋物線y=-x2-2x+c經(jīng)過點(diǎn)A.
①求c的值;
②將拋物線向下平移m個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在△OAB的內(nèi)部(不包括△OAB的邊界),求m的取值范圍(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,某種新型導(dǎo)彈從地面發(fā)射點(diǎn)L處發(fā)射,在初始豎直加速飛行階段,導(dǎo)彈上升的高度y(km)與飛行時(shí)間x(s)之間的關(guān)系式為y=x2x(0≤x≤10).發(fā)射3 s后,導(dǎo)彈到達(dá)A點(diǎn),此時(shí)位于與L同一水面的R處雷達(dá)站測(cè)得AR的距離是2 km,再過3 s后,導(dǎo)彈到達(dá)B點(diǎn).

(1)求發(fā)射點(diǎn)L與雷達(dá)站R之間的距離;
(2)當(dāng)導(dǎo)彈到達(dá)B點(diǎn)時(shí),求雷達(dá)站測(cè)得的仰角(即∠BRL)的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)A(1,2)和B(-2,5),試求出兩個(gè)二次函數(shù),使它們的圖象都經(jīng)過A、B兩點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線y=-2x+4與x軸、y軸分別相交于A、C兩點(diǎn),拋物線y=-2x2+bx+c (a≠0)經(jīng)過點(diǎn)A、C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為P,在拋物線上存在點(diǎn)Q,使△ABQ的面積等于△APC面積的4倍.求出點(diǎn)Q的坐標(biāo);
(3)點(diǎn)M是直線y=-2x+4上的動(dòng)點(diǎn),過點(diǎn)M作ME垂直x軸于點(diǎn)E,在y軸(原點(diǎn)除外)上是否存在點(diǎn)F,使△MEF為等腰直角三角形? 若存在,求出點(diǎn)F的坐標(biāo)及對(duì)應(yīng)的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1)求此拋物線的解析式;
(2)拋物線上是否存在點(diǎn)P,使,若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案