如圖,△ABC是等邊三角形,BD是中線,延長(zhǎng)BC到點(diǎn)E,使CE=CD.則DB和DE是否相等?為什么?

解:DB=DE,理由為:
證明:∵△ABC是等邊三角形,BD是中線,
∴∠ABC=∠ACB=60°,∠DBC=30°(等腰三角形三線合一),
又∵CE=CD,
∴∠CDE=∠CED,
又∵∠BCD=∠CDE+∠CED,
∴∠CDE=∠CED=∠BCD=30°,
∴∠DBC=∠DEC,
∴DB=DE(等角對(duì)等邊).
分析:DB=DE,理由為:由三角形ABC為等邊三角形,得到三內(nèi)角為60°,再由BD為中線,利用三線合一得到BD為角平分線,可得出∠DBC=30°,由CE=CD,利用等邊對(duì)等角得到一對(duì)角相等,再由∠ACB為三角形DCE的外角,利用外角的性質(zhì)得到∠DEC=30°,等量代換得到一對(duì)角相等,利用等角對(duì)等邊即可得證.
點(diǎn)評(píng):此題考查了等邊三角形的性質(zhì),三角形的外角性質(zhì),以及等腰三角形的判定與性質(zhì),熟練掌握等邊三角形的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,⊙O過點(diǎn)B,C,且與BA,CA的延長(zhǎng)線分別交于點(diǎn)D,E,弦DF精英家教網(wǎng)∥AC,EF的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,△ABC是等邊三角形,過AB邊上一點(diǎn)D作BC的平行線交AC于E,則△ADE的三個(gè)內(nèi)角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點(diǎn),∠BAD=15°,將△ABD繞點(diǎn)A點(diǎn)逆時(shí)針方向旋轉(zhuǎn)后到達(dá)△ACE的位置,那么旋轉(zhuǎn)角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案