精英家教網 > 初中數學 > 題目詳情
下列關于x的一元二次方程中,有兩個不相等的實數根的方程是( )
A.x2+1=0
B.x2-2x+1=0
C.x2+x-2=0
D.x2+2x+1=0
【答案】分析:根據根的判別式△=b2-4ac的值的符號,可以判定個方程實數根的情況,注意排除法在解選擇題中的應用.
解答:解:A、∵△=b2-4ac=02-4×1×1=-4<0,
∴此方程沒有實數根,
故本選項錯誤;
B、∵△=b2-4ac=(-2)2-4×1×1=0,
∴此方程有兩個相等的實數根,
故本選項錯誤;
C、∵△=b2-4ac=12-4×1×(-2)=9>0,
∴此方程有兩個不相等的實數根,
故本選項正確;
D、∵△=b2-4ac=22-4×1×1=0,
∴此方程有兩個相等的實數根,
故本選項錯誤.
故選C.
點評:此題考查了一元二次方程根的判別式的知識.此題比較簡單,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的兩個實數根;②當△=0時,方程有兩個相等的兩個實數根;③當△<0時,方程無實數根.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

若x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數a,b,c有如下關系:x1+x2=-
b
a
x1x2=
c
a
.我們把它們稱為根與系數關系定理.
如果設二次函數y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數關系定理我們又可以得到A、B兩個交點間的距離為:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

請你參考以上定理和結論,解答下列問題:
設二次函數y=ax2+bx+c(a>0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當△ABC為等腰直角三角形時,求b2-4ac的值;
(2)當△ABC為等邊三角形時,b2-4ac=
 

(3)設拋物線y=x2+kx+1與x軸的兩個交點為A、B,頂點為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=60°?

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•天津)若關于x的一元二次方程(x-2)(x-3)=m有實數根x1、x2,且x1≠x2,有下列結論:
①x1=2,x2=3;②m>-
1
4
;③二次函數y=(x-x1)(x-x2)+m的圖象與x軸交點的坐標為(2,0)和(3,0).
其中,正確結論的個數是( 。

查看答案和解析>>

科目:初中數學 來源:新教材新學案數學九年級上冊 題型:044

將下列關于x的一元二次方程化成一般形式,再寫出它的二次項系數、一次項系數及常數項.

(1)2x(x-1)=3(x+5)-4;

(2)(ax-b)2-(a-bx)2=a2+b2(a≠±b).

查看答案和解析>>

科目:初中數學 來源: 題型:

把下列關于x的一元二次方程化成一般形式,再寫出它的二次項系數、一次項系數和常數項.

 (x+1)(x-1)= 3;                         

查看答案和解析>>

科目:初中數學 來源: 題型:

把下列關于x的一元二次方程化成一般形式,再寫出它的二次項系數、一次項系數和常數項.

 (x-5)2+(x-3)2=16.

查看答案和解析>>

同步練習冊答案