如圖,△ABP與△CDP是兩個全等的等邊三角形,且PA⊥PD.有下列四個結(jié)論:
(1)∠PBC=15°;(2)AD∥BC;(3)直線PC與AB垂直;(4)四邊形ABCD是軸對稱圖形.
其中正確結(jié)論個數(shù)是( )

A.1
B.2
C.3
D.4
【答案】分析:(1)先求出∠BPC的度數(shù)是360°-60°×2-90°=150°,再根據(jù)對稱性得到△BPC為等腰三角形,∠PBC即可求出;
(2)根據(jù)題意:有△APD是等腰直角三角形;△PBC是等腰三角形;結(jié)合軸對稱圖形的定義與判定,可得四邊形ABCD是軸對稱圖形,進而可得②③④正確.
解答:解:∵△ABP≌△CDP,
∴AB=CD,AP=DP,BP=CP.
又∵△ABP與△CDP是兩個等邊三角形,
∴∠PAB=∠PBA=∠APB=60°.
①根據(jù)題意,∠BPC=360°-60°×2-90°=150°
∵BP=PC,
∴∠PBC=(180°-150°)÷2=15°,
故本選項正確;

②∵∠ABC=60°+15°=75°,
∵AP=DP,
∴∠DAP=45°,
∵∠BAP=60°,
∴∠BAD=∠BAP+∠DAP=60°+45°=105°,
∴∠BAD+∠ABC=105°+75°=180°,
∴AD∥BC;
故本選項正確;

③延長CP交于AB于點O.
∠APO=180°-(∠APD+∠CPD)=180°-(90°+60°)=180°-150°=30°,
∵∠PAB=60°,
∴∠AOP=30°+60°=90°,
故本選項正確;

④根據(jù)題意可得四邊形ABCD是軸對稱圖形,
故本選項正確.
綜上所述,以上四個命題都正確.
故選D.
點評:本題考查軸對稱圖形的定義與判定,如果一個圖形沿著一條直線對折,兩側(cè)的圖形能完全重合,這個圖形就是軸對稱圖形.折痕所在的這條直線叫做對稱軸.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

11、如圖,△ABP與△CDP是兩個全等的等邊三角形,且PA⊥PD.有下列四個結(jié)論:
①∠PBC=15°;②AD∥BC;③直線PC與AB垂直;④四邊形ABCD是軸對稱圖形.其中正確的是
①②③④
(只需填入序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABP與△CDP是兩個全等的等邊三角形,且PA⊥PD.有下列四個結(jié)論:
(1)∠PBC=15°;(2)AD∥BC;(3)直線PC與AB垂直;(4)四邊形ABCD是軸對稱圖形.
其中正確結(jié)論個數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,∠ABP與∠PBC互余,∠CBD=30°,BP平分∠ABD,則∠ABP=
60
60
度.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年江蘇省無錫市新區(qū)中考數(shù)學模擬試卷(解析版) 題型:填空題

如圖,△ABP與△CDP是兩個全等的等邊三角形,且PA⊥PD.有下列四個結(jié)論:
①∠PBC=15°;②AD∥BC;③直線PC與AB垂直;④四邊形ABCD是軸對稱圖形.其中正確的是    (只需填入序號).

查看答案和解析>>

同步練習冊答案