解:(1)設(shè)拋物線的解析式為y=a(x-6)
2+k;
∵拋物線經(jīng)過點A(3,0)和C(0,9),
∴
,
解得:
,
∴
.
(2)連接AE;
∵DE是⊙A的切線,
∴∠AED=90°,AE=3,
∵直線l是拋物線的對稱軸,點A,D是拋物線與x軸的交點,
∴AB=BD=3,
∴AD=6;
在Rt△ADE中,DE
2=AD
2-AE
2=6
2-3
2=27,
∴
.
(3)當(dāng)BF⊥ED時;
∵∠AED=∠BFD=90°,∠ADE=∠BDF,
∴△AED∽△BFD,
∴
,
即
,
∴
;
當(dāng)FB⊥AD時,
∵∠AED=∠FBD=90°,∠ADE=∠FDB,
∴△AED∽△FBD,
∴
,
即
;
∴BF的長為
或
.
分析:(1)已知了拋物線的頂點坐標(biāo),可將拋物線的解析式設(shè)為頂點坐標(biāo)式,然后將C點坐標(biāo)代入求解即可.
(2)由于DE是⊙A的切線,連接AE,那么根據(jù)切線的性質(zhì)知AE⊥DE,在Rt△AED中,AE、AB是圓的半徑,即AE=OA=AB=3,而A、D關(guān)于拋物線的對稱軸對稱,即AB=BD=3,由此可得到AD的長,進而可利用勾股定理求得切線DE的長.
(3)若△BFD與EAD△相似,則有兩種情況需要考慮:①△AED∽△BFD,②△AED∽△FBD,根據(jù)不同的相似三角形所得不同的比例線段即可求得BF的長.
點評:此題主要考查了二次函數(shù)解析式的確定、切線的性質(zhì)、二次函數(shù)的對稱性、勾股定理以及相似三角形的性質(zhì)等重要知識;需要注意的是,當(dāng)相似三角形的對應(yīng)邊和對應(yīng)角不明確的情況下,一定要分類討論,以免漏解.