如圖,有一塊三角形土地,它的底邊BC=100m,高AH=80m.某單位要沿著底邊BC修一座底面積是矩形DEFG的大樓,設(shè)DG=xm,DE=ym.
(1)求y與x之間的函數(shù)關(guān)系式.
(2)當(dāng)?shù)酌鍰EFG是正方形時(shí),求出正方形DEFG的面積.

解:(1)∵DG∥BC
∴△ADG∽△ABC
它們的對(duì)應(yīng)高線比等于對(duì)應(yīng)線段的比,
=設(shè)DG=xm,DE=ym,那么AM=80-y,
=
∴y=-x+80;

(2)當(dāng)x=y時(shí),
x=-x+80,
解得:x=
∴DE=,DG=,
∴正方形DEFG的面積為m2
分析:(1)兩三角形相似,對(duì)應(yīng)高之比等于相似比.利用此性質(zhì)即可解答.
(2)利用正方形的性質(zhì)代入x求解即可.
點(diǎn)評(píng):本題主要考查利用矩形的性質(zhì)得出兩個(gè)角相等,進(jìn)而證明兩個(gè)三角形相似,再利用相似三角形的性質(zhì)得出比例關(guān)系,最終求得DG或DE的長(zhǎng),進(jìn)而求得矩形的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直徑為AB的一塊半圓形土地上,畫出一塊三角形區(qū)域,使三角形的一邊為AB,頂點(diǎn)C在半圓上,其它兩邊長(zhǎng)分別為6cm和8cm,現(xiàn)要建造一個(gè)內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計(jì)方案是使AC=8cm,BC=6cm。

(1)求△ABC中AB邊上的高h(yuǎn);

(2)設(shè)DN=x,當(dāng)x取何值時(shí),水池DEFN的面積最大?

(3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85m處有一棵大樹,則這棵大樹是否位于最大矩形的邊上?如果在,為了保護(hù)大樹,請(qǐng)你設(shè)計(jì)出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開(kāi)大樹。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直徑為AB的一塊半圓形土地上,畫出一塊三角形區(qū)域,使三角形的一邊為AB,頂點(diǎn)C在半圓上,其它兩邊長(zhǎng)分別為6cm和8cm,現(xiàn)要建造一個(gè)內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計(jì)方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB邊上的高h(yuǎn);
(2)設(shè)DN=x,當(dāng)x取何值時(shí),水池DEFN的面積最大?
(3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85m處有一棵大樹,則這棵大樹是否位于最大矩形的邊上?如果在,為了保護(hù)大樹,請(qǐng)你設(shè)計(jì)出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開(kāi)大樹。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省沭陽(yáng)銀河學(xué)校九年級(jí)下學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

如圖,在直徑為AB的一塊半圓形土地上,畫出一塊三角形區(qū)域,使三角形的一邊為AB,頂點(diǎn)C在半圓上,其它兩邊長(zhǎng)分別為6cm和8cm,現(xiàn)要建造一個(gè)內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計(jì)方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB邊上的高h(yuǎn);
(2)設(shè)DN=x,當(dāng)x取何值時(shí),水池DEFN的面積最大?
(3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85m處有一棵大樹,則這棵大樹是否位于最大矩形的邊上?如果在,為了保護(hù)大樹,請(qǐng)你設(shè)計(jì)出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開(kāi)大樹。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省九年級(jí)下學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

如圖,在直徑為AB的一塊半圓形土地上,畫出一塊三角形區(qū)域,使三角形的一邊為AB,頂點(diǎn)C在半圓上,其它兩邊長(zhǎng)分別為6cm和8cm,現(xiàn)要建造一個(gè)內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計(jì)方案是使AC=8cm,BC=6cm。

(1)求△ABC中AB邊上的高h(yuǎn);

(2)設(shè)DN=x,當(dāng)x取何值時(shí),水池DEFN的面積最大?

(3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85m處有一棵大樹,則這棵大樹是否位于最大矩形的邊上?如果在,為了保護(hù)大樹,請(qǐng)你設(shè)計(jì)出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開(kāi)大樹。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案