如圖所示,根據(jù)題意求解.請(qǐng)問,1聽果奶多少錢?

精英家教網(wǎng)
設(shè)1聽果奶為x元,
依題意得方程:20=3+x+4(x+0.5),
解得:x=3(元).
答:1聽果奶3元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、下面是初一(2)班馬小虎同學(xué)解的一道數(shù)學(xué)題.
題目:在同一平面上,若∠AOB=70°,∠BOC=15°,求∠AOC的度數(shù).
解:根據(jù)題意畫出圖形,如圖所示,
∵∠AOC=∠AOB-∠BOC
=70°-15°
=55°
∴∠AOC=55°
若你是老師,會(huì)判馬小虎滿分嗎?若會(huì),說明理由,若不會(huì),請(qǐng)指出錯(cuò)誤之處,并給出你認(rèn)為正確的解法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•本溪二模)某工廠用如圖所示的長(zhǎng)方形和正方形紙板,做成如圖乙所示的豎式與橫式兩種長(zhǎng)方體形狀的無蓋紙盒.
(1)現(xiàn)有正方形紙板162張,長(zhǎng)方形紙板340張,若要做兩種紙盒共100個(gè),設(shè)做豎式紙盒x個(gè).
①根據(jù)題意,完成以下表格:
      紙盒
紙板
豎式紙盒(個(gè)) 橫式紙盒(個(gè))
x 100-x
正方形紙板(張)
x
x
2(100-x)
長(zhǎng)方形紙板(張) 4x
3(100-x)
3(100-x)
②按兩種紙盒的生產(chǎn)個(gè)數(shù)來分,有哪幾種生產(chǎn)方案?
(2)若每個(gè)豎式紙盒獲利2元,橫式紙盒獲利3元,求上述哪種方案銷售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

最近,新鄉(xiāng)市政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加,某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,銷售時(shí)售價(jià)不低于成本價(jià)但又不能高于每千克25元,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn)每天的銷售量y(千克)與所售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖所示).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)該農(nóng)戶每天所獲得的利潤(rùn)為w元,求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),w的值最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下面是小民解的一道題,請(qǐng)你檢查他的解答情況.
題目:在同一平面上,有兩個(gè)角∠AOB和∠BOC,若∠AOB=70°,∠BOC=15°,求∠AOC的度數(shù).
解:根據(jù)題意可畫出如圖所示的圖形:
因?yàn)椤螦OC=∠AOB-∠BOC,
所以∠AOC=70°-15°=55°.
若你是老師,你會(huì)判斷給小民滿分嗎?若會(huì),請(qǐng)說明理由.若不會(huì),請(qǐng)將小民的錯(cuò)誤指出來,并給出你認(rèn)為正確的解法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

根據(jù)題意及解答過程填空:
如圖所示,AB=10cm,D為AC的中點(diǎn),DC=2cm,BE=
1
3
BC
,求CE的長(zhǎng).
解:因?yàn)镈為AC的中點(diǎn),DC=2cm.
所以AC=
2
2
DC=
4
4
 cm.
由圖可知:BC=
AB
AB
-AC
=10cm-
4
4
cm
=
6
6
cm.
所以BE=
1
3
BC
=
2
2
cm.
所以CE=BC-BE=
4
4
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案