Rt△ABC中,CD是斜邊AB上的高,DE⊥AC于E,AC:CB=5:4,則AE:EC=


  1. A.
    25:16
  2. B.
    5:4
  3. C.
    5:2
  4. D.
    以上都不對(duì)
A
分析:利用已知的直角和公共角,可證圖中所有三角形都相似,再利用比例線段,即可求出AE:EC.
解答:在Rt△ABC中,CD⊥AB,DE⊥AC,
∴△ADE∽△DCE∽△ACD∽△CBD∽△ABC,
∴AE:EC=AD:DB,AC2=AD•AB,BC2=DB•AB,
∴AE:EC=AD:DB=AC2:BC2=25:16.
故選A.
點(diǎn)評(píng):本題主要了直角三角形斜邊上的高線,把這個(gè)直角三角形分成的兩個(gè)直角三角形與原三角形相似以及射影定理的內(nèi)容.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,CD是斜邊AB上的中線,已知CD=2,AC=3,則sinB的值是( 。
A、
2
3
B、
3
2
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、Rt△ABC中,CD是斜邊AB上的高,DE⊥AC于E,AC:CB=5:4,則AE:EC=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知Rt△ABC中,CD⊥AB于D,且AD=3,AC=6.則AB=
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,在Rt△ABC中,CD是斜邊AB上的中線,DF⊥AB,交AC于E,交BC的延長線于點(diǎn)F.
(1)求證:∠A=∠F;
(2)△CDE與△FDC是否相似?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,CD是斜邊AB上的高,若∠A=30°,BD=1cm,則AD=
3
3
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案