如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為( )

A.4
B.
C.6
D.
【答案】分析:連接OD,由DF為圓的切線,利用切線的性質(zhì)得到OD垂直于DF,根據(jù)三角形ABC為等邊三角形,利用等邊三角形的性質(zhì)得到三條邊相等,三內(nèi)角相等,都為60°,由OD=OC,得到三角形OCD為等邊三角形,進而得到OD平行與AB,由O為BC的中點,得到D為AC的中點,在直角三角形ADF中,利用30°所對的直角邊等于斜邊的一半求出AD的長,進而求出AC的長,即為AB的長,由AB-AF求出FB的長,在直角三角形FBG中,利用30°所對的直角邊等于斜邊的一半求出BG的長,再利用勾股定理即可求出FG的長.
解答:解:連接OD,
∵DF為圓O的切線,
∴OD⊥DF,
∵△ABC為等邊三角形,
∴AB=BC=AC,∠A=∠B=∠C=60°,
∵OD=OC,
∴△OCD為等邊三角形,
∴OD∥AB,
又O為BC的中點,
∴D為AC的中點,即OD為△ABC的中位線,
∴OD∥AB,
∴DF⊥AB,
在Rt△AFD中,∠ADF=30°,AF=2,
∴AD=4,即AC=8,
∴FB=AB-AF=8-2=6,
在Rt△BFG中,∠BFG=30°,
∴BG=3,
則根據(jù)勾股定理得:FG=3
故選B
點評:此題考查了切線的性質(zhì),等邊三角形的性質(zhì),含30°直角三角形的性質(zhì),勾股定理,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點D、E,過點D作DF⊥精英家教網(wǎng)BC,垂足為F
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求DF的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟寧)如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為
3
3
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(山東濟寧卷)數(shù)學(xué)2(解析版) 題型:選擇題

如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為

A.4            B.           C.6            D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年滬科版初中數(shù)學(xué)八年級下20.3矩形 菱形 正方形練習(xí)卷(解析版) 題型:選擇題

如圖,以等邊三角形ABC的邊AC為邊,向外做正方形ACDE,則(1)∠BCE=105°;(2)∠BAE=105°;(3)BE=BD ;(4)∠DBE=30°;其中結(jié)論正確的有(     )個

 

A.4     B.3     C.2      D.1

 

查看答案和解析>>

同步練習(xí)冊答案