(2009•中山)分解因式:x2-y2-3x-3y=   
【答案】分析:根據(jù)觀(guān)察可知,此題有4項(xiàng)且前2項(xiàng)適合平方差公式,后2項(xiàng)可提公因式,分解后也有公因式(x+y),直接提取即可.
解答:解:x2-y2-3x-3y,
=(x2-y2)-(3x+3y),
=(x+y)(x-y)-3(x+y),
=(x+y)(x-y-3).
點(diǎn)評(píng):本題考查了分組分解法進(jìn)行因式分解,關(guān)鍵是分組后組與組之間可以繼續(xù)進(jìn)行因式分解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)復(fù)習(xí)查漏補(bǔ)缺資料(解析版) 題型:解答題

(2009•中山)正方形ABCD邊長(zhǎng)為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直.
(1)證明:Rt△ABM∽R(shí)t△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形ABCN的面積最大,并求出最大面積;
(3)當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí)Rt△ABM∽R(shí)t△AMN,求此時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省溫州市永嘉縣甌北學(xué)區(qū)九年級(jí)四科綜合測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•中山)正方形ABCD邊長(zhǎng)為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直.
(1)證明:Rt△ABM∽R(shí)t△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形ABCN的面積最大,并求出最大面積;
(3)當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí)Rt△ABM∽R(shí)t△AMN,求此時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年某實(shí)驗(yàn)中學(xué)九年級(jí)(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•中山)正方形ABCD邊長(zhǎng)為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直.
(1)證明:Rt△ABM∽R(shí)t△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形ABCN的面積最大,并求出最大面積;
(3)當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí)Rt△ABM∽R(shí)t△AMN,求此時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江西省中考數(shù)學(xué)模擬試卷(4)(解析版) 題型:解答題

(2009•中山)正方形ABCD邊長(zhǎng)為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直.
(1)證明:Rt△ABM∽R(shí)t△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形ABCN的面積最大,并求出最大面積;
(3)當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí)Rt△ABM∽R(shí)t△AMN,求此時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年河南省南陽(yáng)油田中招數(shù)學(xué)第二次模擬考試試卷(解析版) 題型:解答題

(2009•中山)正方形ABCD邊長(zhǎng)為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直.
(1)證明:Rt△ABM∽R(shí)t△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形ABCN的面積最大,并求出最大面積;
(3)當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí)Rt△ABM∽R(shí)t△AMN,求此時(shí)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案