(2008•天門(mén))如圖,在平面直角坐標(biāo)系中,OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)P為邊AB上一點(diǎn),∠CPB=60°,沿CP折疊正方形,折疊后,點(diǎn)B落在平面內(nèi)點(diǎn)B′處,則B′點(diǎn)的坐標(biāo)為( )

A.(2,2
B.(,
C.(2,
D.(,
【答案】分析:過(guò)點(diǎn)B′作B′D⊥OC,因?yàn)椤螩PB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根據(jù)勾股定理得DC=2,故OD=4-2,即B′點(diǎn)的坐標(biāo)為(2,).
解答:解:過(guò)點(diǎn)B′作B′D⊥OC
∵∠CPB=60°,CB′=OC=OA=4
∴∠B′CD=30°,B′D=2
根據(jù)勾股定理得DC=2
∴OD=4-2,即B′點(diǎn)的坐標(biāo)為(2,
故選C.
點(diǎn)評(píng):主要考查了圖形的翻折變換和正方形的性質(zhì),要會(huì)根據(jù)點(diǎn)的坐標(biāo)求出所需要的線(xiàn)段的長(zhǎng)度,靈活運(yùn)用勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《圓》(13)(解析版) 題型:解答題

(2008•天門(mén))如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠BAC的平分線(xiàn)交⊙O于點(diǎn)D,過(guò)D點(diǎn)作EF∥BC交AB的延長(zhǎng)線(xiàn)于點(diǎn)E,交AC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:EF為⊙O的切線(xiàn);
(2)若sin∠ABC=,CF=1,求⊙O的半徑及EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省臨沂市中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2008•天門(mén))如圖,為了測(cè)量河兩岸A,B兩點(diǎn)的距離,在與AB垂直的方向上取點(diǎn)C,測(cè)得AC=a,∠ACB=a,那么AB等于( )

A.a(chǎn)•sinα
B.a(chǎn)•cosα
C.a(chǎn)•tanα
D.a(chǎn)•cotα

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省德州市平原縣中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2008•天門(mén))如圖,在平面直角坐標(biāo)系中,OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)P為邊AB上一點(diǎn),∠CPB=60°,沿CP折疊正方形,折疊后,點(diǎn)B落在平面內(nèi)點(diǎn)B′處,則B′點(diǎn)的坐標(biāo)為( )

A.(2,2
B.(
C.(2,
D.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(14)(解析版) 題型:選擇題

(2008•天門(mén))如圖,為了測(cè)量河兩岸A,B兩點(diǎn)的距離,在與AB垂直的方向上取點(diǎn)C,測(cè)得AC=a,∠ACB=a,那么AB等于( )

A.a(chǎn)•sinα
B.a(chǎn)•cosα
C.a(chǎn)•tanα
D.a(chǎn)•cotα

查看答案和解析>>

同步練習(xí)冊(cè)答案