【題目】如圖,在Rt△ABC中,∠ACB=90,AO是△ABC的角平分線。以O(shè)為圓心,OC為半徑作⊙O。
(1)(3分)求證:AB是⊙O的切線。
(2)(3分)已知AO交⊙O于點(diǎn)E,延長(zhǎng)AO交⊙O于點(diǎn)D, tanD=,求的值。
(3)(4分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng)。
【答案】(1)詳見(jiàn)解析;(2);(3).
【解析】
試題分析:(1)過(guò)O作OF⊥AB于F,由角平分線上的點(diǎn)到角兩邊的距離相等即可得證;(2)連接CE,證明△ACE∽△ADC可得 = tanD=;(3)先由勾股定理求得AE的長(zhǎng),再證明△B0F∽△BAC,得,設(shè)BO=y ,BF=z,列二元一次方程組即可解決問(wèn)題.
試題解析:⑴證明:作OF⊥AB于F
∵AO是∠BAC的角平分線,∠ACB=90
∴OC=OF (2分)
∴AB是⊙O的切線 (3分)
⑵連接CE (1分)
∵AO是∠BAC的角平分線,
∴∠CAE=∠CAD
∵∠ACE所對(duì)的弧與∠CDE所對(duì)的弧是同弧
∴∠ACE=∠CDE
∴△ACE∽△ADC
∴ = tanD=
⑶先在△ACO中,設(shè)AE=x,
由勾股定理得
(x+3)=(2x) +3 ,解得x=2,
∵∠BFO=90°=∠ACO
易證Rt△B0F∽Rt△BAC
得,
設(shè)BO=y BF=z
即4z=9+3y,4y=12+3z
解得z= y=
∴AB=+4=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2﹣2mx以下各點(diǎn)不可能成為二次函數(shù)頂點(diǎn)的是( 。
A. (﹣2,4) B. (﹣2,﹣4) C. (﹣1,﹣1) D. (1,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下面給出的數(shù)軸,解答下面的問(wèn)題:
(1)請(qǐng)你根據(jù)圖中A、B兩點(diǎn)的位置,分別寫(xiě)出它們所表示的有理數(shù)
A: ___________ B: _____________ ;
(2)觀察數(shù)軸,與點(diǎn)A的距離為3的點(diǎn)表示的數(shù)是:_____________ ;
(3)若將數(shù)軸折疊,使得A點(diǎn)與-3表示的點(diǎn)重合,則B點(diǎn)與數(shù)_ _表示的點(diǎn)重合;
(4)若數(shù)軸上M、N兩點(diǎn)之間的距離為1004(M在N的左側(cè)),且M、N兩點(diǎn)經(jīng)過(guò)(3)中折疊后互相重合,則M、N兩點(diǎn)表示的數(shù)分別是: M: _______ N: _______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知點(diǎn)A(﹣1,0),點(diǎn)B(0,﹣2),AD與y軸交于點(diǎn)E,且E為AD的中點(diǎn),雙曲線y=經(jīng)過(guò)C,D兩點(diǎn)且D(a,4)、C(2,b).
(1)求a、b、k的值;
(2)如圖2,線段CD能通過(guò)旋轉(zhuǎn)一定角度后點(diǎn)C、D的對(duì)應(yīng)點(diǎn)C′、D′還能落在y=的圖象上嗎?如果能,寫(xiě)出你是如何旋轉(zhuǎn)的,如果不能,請(qǐng)說(shuō)明理由;
(3)如圖3,點(diǎn)P在雙曲線y=上,點(diǎn)Q在y軸上,若以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是
A. 直線一定比射線長(zhǎng) B. 角的兩邊越長(zhǎng),角度就越大
C. a一定是正數(shù),-a一定是負(fù)數(shù) D. -1是最大的負(fù)整數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.
(3) 點(diǎn)A,B,C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請(qǐng)問(wèn):3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列等式:
(1)第1個(gè)等式:a1=; 第2個(gè)等式:a2=;
第3個(gè)等式:a3=; 第4個(gè)等式:a4=;
…
用含有n的代數(shù)式表示第n個(gè)等式:an=___________=___________(n為正整數(shù));
(2)按一定規(guī)律排列的一列數(shù)依次為,1, , , , ,…,按此規(guī)律,這列數(shù)中的第100個(gè)數(shù)是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,OP是∠MON的平分線,點(diǎn)A為OM上一點(diǎn),點(diǎn)B為OP上一點(diǎn).請(qǐng)你利用該圖形在ON上找一點(diǎn)C,使△COB≌△AOB,請(qǐng)?jiān)趫D①畫(huà)出圖形.參考這個(gè)作全等三角形的方法,解答下列問(wèn)題:
(2)如圖②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F.請(qǐng)你寫(xiě)出FE與FD之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖③,在△ABC中,如果∠ACB不是直角,而(1)中的其他條件不變,在(2)中所得結(jié)論是否仍然成立?請(qǐng)你直接作出判斷,不必說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com