【題目】如圖,AB是⊙O的直徑,C、D是⊙O上一點,∠CDB=20°,過點C作⊙O的切線交AB的延長線于點E,則∠E等于(
A.40°
B.50°
C.60°
D.70°

【答案】B
【解析】解:連接OC,如圖所示:
∵圓心角∠BOC與圓周角∠CDB都對 ,
∴∠BOC=2∠CDB,又∠CDB=20°,
∴∠BOC=40°,
又∵CE為圓O的切線,
∴OC⊥CE,即∠OCE=90°,
則∠E=90°﹣40°=50°.
故選B
連接OC,由CE為圓O的切線,根據(jù)切線的性質(zhì)得到OC垂直于CE,即三角形OCE為直角三角形,再由同弧所對的圓心角等于所對圓周角的2倍,由圓周角∠CDB的度數(shù),求出圓心角∠COB的度數(shù),在直角三角形OCE中,利用直角三角形的兩銳角互余,即可求出∠E的度數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知EC∥AB,∠EDA=∠ABF.
(1)求證:四邊形ABCD是平行四邊形;
(2)求證:OA2=OEOF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明晚上由路燈A下的點B處走到點C處時,測得自身影子CD的長為1米,他繼續(xù)往前走3米到達點E處(即CE=3米),測得自己影子EF的長為2米,已知小明的身高是1.5米,那么路燈A的高度AB是(
A.4.5米
B.6米
C.7.2米
D.8米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點E,AE=1,ED=2.
(1)求證:∠ABC=∠D;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,且AC⊥BD,點E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,依次連接各邊中點得到四邊形EFGH,求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(2,3)、B(1,1)、C(4,1)是平面直角坐標系中的三點.

(1)①請畫出△ABC關于y軸對稱的△A1B1C1
②畫出△A1B1C1向下平移3個單位得到的△A2B2C2;
(2)若△ABC中有一點P坐標為(x,y),請直接寫出經(jīng)過以上變換后△A2B2C2中點P的對應點P2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廣場綠化工程中有一塊長2千米,寬1千米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,兩塊綠地之間既周邊留有寬度相等的人行通道(如圖),并在這些人行通道鋪上瓷磚,要求鋪瓷磚的面積是矩形空地面積的 ,設人行通道的寬度為x千米,則下列方程正確的是( )

A.(2﹣3x)(1﹣2x)=1
B.
(2﹣3x)(1﹣2x)=1
C.
(2﹣3x)(1﹣2x)=1
D.
(2﹣3x)(1﹣2x)=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應關系如圖所示:
(1)甲乙兩地相距多遠?
(2)求快車和慢車的速度分別是多少?
(3)求出兩車相遇后y與x之間的函數(shù)關系式;
(4)何時兩車相距300千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點O位于坐標原點,斜邊AB垂直于x軸,頂點A在函數(shù)y1= (x>0)的圖象上,頂點B在函數(shù)y2= (x>0)的圖象上,∠ABO=30°,則 =

查看答案和解析>>

同步練習冊答案