(2009•房山區(qū)二模)(1)如圖,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是邊BC、CD上的點,且∠EAF=∠BAD.
求證:EF=BE+FD;

(2)如圖,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是邊BC、CD上的點,且∠EAF=∠BAD,(1)中的結論是否仍然成立?

(3)如圖,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長線上的點,且∠EAF=∠BAD,(1)中的結論是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關系,并證明.

【答案】分析:(1)可通過構建全等三角形來實現(xiàn)線段間的轉換.延長EB到G,使BG=DF,連接AG.目的就是要證明三角形AGE和三角形AEF全等將EF轉換成GE,那么這樣EF=BE+DF了,于是證明兩組三角形全等就是解題的關鍵.三角形ABE和AEF中,只有一條公共邊AE,我們就要通過其他的全等三角形來實現(xiàn),在三角形ABG和AFD中,已知了一組直角,BG=DF,AB=AD,因此兩三角形全等,那么AG=AF,∠1=∠2,那么∠1+∠3=∠2+∠3=∠EAF=∠BAD.由此就構成了三角形ABE和AEF全等的所有條件(SAS),那么就能得出EF=GE了.
(2)思路和作輔助線的方法與(1)完全一樣,只不過證明三角形ABG和ADF全等中,證明∠ABG=∠ADF時,用到的等角的補角相等,其他的都一樣.因此與(1)的結果完全一樣.
(3)按照(1)的思路,我們應該通過全等三角形來實現(xiàn)相等線段的轉換.就應該在BE上截取BG,使BG=DF,連接AG.根據(jù)(1)的證法,我們可得出DF=BG,GE=EF,那么EF=GE=BE-BG=BE-DF.所以(1)的結論在(3)的條件下是不成立的.
解答:證明:(1)延長EB到G,使BG=DF,連接AG.

∵∠ABG=∠ABC=∠D=90°,AB=AD,
∴△ABG≌△ADF.
∴AG=AF,∠1=∠2.
∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.
∴∠GAE=∠EAF.
又AE=AE,
∴△AEG≌△AEF.
∴EG=EF.
∵EG=BE+BG.
∴EF=BE+FD

(2)(1)中的結論EF=BE+FD仍然成立.

(3)結論EF=BE+FD不成立,應當是EF=BE-FD.
證明:在BE上截取BG,使BG=DF,連接AG.

∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵AB=AD,
∴△ABG≌△ADF.
∴∠BAG=∠DAF,AG=AF.
∴∠BAG+∠EAD=∠DAF+∠EAD
=∠EAF=∠BAD.
∴∠GAE=∠EAF.
∵AE=AE,
∴△AEG≌△AEF.
∴EG=EF
∵EG=BE-BG
∴EF=BE-FD.
點評:本題考查了三角形全等的判定和性質;本題中通過全等三角形來實現(xiàn)線段的轉換是解題的關鍵,沒有明確的全等三角形時,要通過輔助線來構建與已知和所求條件相關聯(lián)全等三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年北京市房山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•房山區(qū)二模)如圖,已知拋物線經(jīng)過點B(-2,3),原點O和x軸上另一點A,它的對稱軸與x軸交于點C(2,0).
(1)求此拋物線的函數(shù)關系式;
(2)連接CB,在拋物線的對稱軸上找一點E,使得CB=CE,求點E的坐標;
(3)在(2)的條件下,連接BE,設BE的中點為G,在拋物線的對稱軸上是否存在點P,使得△PBG的周長最。咳舸嬖,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市房山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•房山區(qū)二模)已知拋物線y=3x2+2x+n,
(1)若n=-1,求該拋物線與x軸的交點坐標;
(2)當-1<x<1時,拋物線與x軸有且只有一個公共點,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市房山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•房山區(qū)二模)將直線y=x+1向左平移2個單位后得到直線l,若直線l與反比例函數(shù)y=的圖象的交點為(2,-m).
(1)求直線l的解析式及直線l與兩坐標軸的交點;
(2)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市房山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•房山區(qū)二模)已知:如圖,在直角梯形ABCD中,AD∥BC,∠A=90°,BC=CD=10,sinC=
(1)求直角梯形ABCD的面積;
(2)點E是BC上一點,過點E作EF⊥DC于點F.求證:AB•CE=EF•CD.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市房山區(qū)中考數(shù)學二模試卷(解析版) 題型:填空題

(2009•房山區(qū)二模)填在下面三個田字格內(nèi)的數(shù)有相同的規(guī)律,根據(jù)此規(guī)律,請?zhí)畛鰣D4中的數(shù)字依次為    ,    ,       

查看答案和解析>>

同步練習冊答案