(2005•青島)某新建小區(qū)要在一塊等邊三角形的公共區(qū)域內(nèi)修建一個(gè)圓形花壇.
(1)若要使花壇面積最大,請你在這塊公共區(qū)域(如圖)內(nèi)確定圓形花壇的圓心P;
(2)若這個(gè)等邊三角形的邊長為18米,請計(jì)算出花壇的面積.

【答案】分析:由題意可知三角形為正三角形,設(shè)計(jì)方案可根據(jù)內(nèi)切圓性質(zhì)及正三角形的性質(zhì),在三角形內(nèi)作內(nèi)切圓使圓形花壇面積最大,然后有圓的性質(zhì)求出內(nèi)切圓的半徑,從而求出面積.
解答:解:(1)要使花壇面積最大,因三角形為等邊三角形,在△ABC內(nèi)作一個(gè)內(nèi)切圓,則此圓面積最大,點(diǎn)P為角平分線的交點(diǎn).

(2)如圖,Rt△BOD中,BD=9米,∠OBD=30°
∴tan30°=,
∴OD=BD•tan30°=9×=3,
∴花壇面積為π•(32=27π(米2).
點(diǎn)評:此題為設(shè)計(jì)性問題,其實(shí)質(zhì)是考查正三角形及內(nèi)切圓的性質(zhì),同時(shí)也考查了圓的性質(zhì)和簡單的計(jì)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(16)(解析版) 題型:解答題

(2005•青島)某新建小區(qū)要在一塊等邊三角形的公共區(qū)域內(nèi)修建一個(gè)圓形花壇.
(1)若要使花壇面積最大,請你在這塊公共區(qū)域(如圖)內(nèi)確定圓形花壇的圓心P;
(2)若這個(gè)等邊三角形的邊長為18米,請計(jì)算出花壇的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《代數(shù)式》(03)(解析版) 題型:填空題

(2005•青島)某商店購進(jìn)一批商品,每件商品進(jìn)價(jià)為a元,若要獲利20%,則每件商品的零售價(jià)應(yīng)定為    元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山東省青島市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•青島)某新建小區(qū)要在一塊等邊三角形的公共區(qū)域內(nèi)修建一個(gè)圓形花壇.
(1)若要使花壇面積最大,請你在這塊公共區(qū)域(如圖)內(nèi)確定圓形花壇的圓心P;
(2)若這個(gè)等邊三角形的邊長為18米,請計(jì)算出花壇的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山東省青島市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2005•青島)某商店購進(jìn)一批商品,每件商品進(jìn)價(jià)為a元,若要獲利20%,則每件商品的零售價(jià)應(yīng)定為    元.

查看答案和解析>>

同步練習(xí)冊答案