(2006•防城港)如圖,⊙O1與⊙O2相交于A,B兩點,直線PQ與⊙O1相切于點P,與⊙O2相切于點Q,AB的延長線交PQ于C,連接PA,PB.下列結(jié)論:①PC=CQ;②;③∠PBC=∠APC.其中錯誤的結(jié)論有( )

A.3個
B.2個
C.1個
D.0個
【答案】分析:根據(jù)直線PQ與⊙O1相切于點P,與⊙O2相切于點Q,切割線定理,弦切角定理知可證明∠PBC=∠CPB+∠APB=∠CPA,故①,③正確;由于兩圓半徑不一定相等,故弧PB與弧BQ的關(guān)系不明確,當(dāng)兩圓半徑相等時,則此圖形關(guān)于AC所在的直線成對稱圖形,故②錯誤;所以選項C正確.
解答:解:∵直線PQ與⊙O1相切于點P,與⊙O2相切于點Q,
∴CB•CA=PC2=CQ2
∵∠CPB=∠PAB,∠PBC=∠PAC+∠APB,
∴∠PBC=∠CPB+∠APB=∠CPA,
∴①,③正確,
∵當(dāng)兩圓半徑相等時,則此圖形關(guān)于AC所在的直線成對稱圖形,
∴②錯誤.
故選C.
點評:本題利用了切線的性質(zhì),弦切角定理,切線長定理,三角形的外角等于與它不相鄰的兩個內(nèi)角的和求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設(shè)OA•OB=3(O為坐標(biāo)系原點).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西玉林市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設(shè)OA•OB=3(O為坐標(biāo)系原點).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西玉林市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A為坐標(biāo)原點,AB所在的直線為x軸,建立直角坐標(biāo)系.然后將矩形ABCD繞點A逆時針旋轉(zhuǎn),使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經(jīng)過B,E,G三點的二次函數(shù)解析式;
(2)設(shè)直線EF與(1)的二次函數(shù)圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設(shè)P為(1)的二次函數(shù)圖象上的一點,BP∥EG,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西防城港市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設(shè)OA•OB=3(O為坐標(biāo)系原點).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西防城港市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A為坐標(biāo)原點,AB所在的直線為x軸,建立直角坐標(biāo)系.然后將矩形ABCD繞點A逆時針旋轉(zhuǎn),使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經(jīng)過B,E,G三點的二次函數(shù)解析式;
(2)設(shè)直線EF與(1)的二次函數(shù)圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設(shè)P為(1)的二次函數(shù)圖象上的一點,BP∥EG,求P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案