如圖,在△ABC中,∠A=90°,AB=AC=2.以BC的中點O為圓心的圓弧分別與AB、AC相切于點D、E,則圖中陰影部分的面積是   
【答案】分析:連OD,OE,根據(jù)切線的性質(zhì)得到OD⊥AB,OE⊥AC,則四邊形OEAD為正方形,而AB=AC=2,O為BC的中點,則OD=OE=1,再根據(jù)正方形的面積公式和扇形的面積公式,利用S陰影部分=S正方形OEAD-S扇形OED,進(jìn)行計算即可.
解答:解:連OD,OE,如圖,
∴OD⊥AB,OE⊥AC,
而∠A=90°,OE=OD,
∴四邊形OEAD為正方形,
∵AB=AC=2,O為BC的中點,
∴OD=OE=ACAC=1,
∴S陰影部分=S正方形OEAD-S扇形OED
=1-,
故答案為:1-
點評:本題考查了扇形的面積公式:S=,也考查了切線的性質(zhì)定理以及正方形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案