精英家教網 > 初中數學 > 題目詳情

如圖,拋物線y=ax2+bx+3與x軸相交于點A(﹣1,0)、B(3,0),與y軸相交于點C,點P為線段OB上的動點(不與O、B重合),過點P垂直于x軸的直線與拋物線及線段BC分別交于點E、F,點D在y軸正半軸上,OD=2,連接DE、OF.

(1)求拋物線的解析式;

(2)當四邊形ODEF是平行四邊形時,求點P的坐標;

(3)過點A的直線將(2)中的平行四邊形ODEF分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)

 

【答案】

解:(1)∵點A(﹣1,0)、B(3,0)在拋物線y=ax2+bx+3上,

,解得。

∴拋物線的解析式為:y=﹣x2+2x+3。

(2)在拋物線解析式y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3)。

設直線BC的解析式為y=kx+b,

將B(3,0),C(0,3)坐標代入得:,解得。

∴直線BC的解析式為y=﹣x+3。

設E點坐標為(x,﹣x2+2x+3),則P(x,0),F(x,﹣x+3)。

∴EF=yE﹣yF=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x。

∵四邊形ODEF是平行四邊形,∴EF=OD=2。

∴﹣x2+3x=2,即x2﹣3x+2=0,解得x=1或x=2。

∴P點坐標為(1,0)或(2,0)。

(3)平行四邊形是中心對稱圖形,其對稱中心為兩條對角線的交點(或對角線的中點),過對稱中心的直線平分平行四邊形的面積,因此過點A與ODEF對稱中心的直線平分ODEF的面積。

①當P(1,0)時,點F坐標為(1,2),

又D(0,2),

設對角線DF的中點為G,則G(,2)。

設直線AG的解析式為y=k1x+b1,

將A(﹣1,0),G(,2)坐標代入得:,解得。

∴所求直線的解析式為:

②當P(2,0)時,點F坐標為(2,1),又D(0,2)。

設對角線DF的中點為G,則G(1,)。

設直線AG的解析式為y=k2x+b2,

將A(﹣1,0),G(1,)坐標代入得:,解得

∴所求直線的解析式為。

綜上所述,所求直線的解析式為。

【解析】

試題分析:(1)利用待定系數法求出拋物線的解析式。

(2)平行四邊形的對邊相等,因此EF=OD=2,據此列方程求出點P的坐標。

(3)利用中心對稱的性質求解:平行四邊形是中心對稱圖形,其對稱中心為兩條對角線的交點(或對角線的中點),過對稱中心的直線平分平行四邊形的面積,因此過點A與ODEF對稱中心的直線平分ODEF的面積。

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標系中可能是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經過點P(-
1
2
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F兩點(點E在點F的左邊),觀察M,N,E,F四點的坐標,寫出一條正確的結論,并通過計算說明;
(3)設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網O為坐標原點,拋物線上一點C的橫坐標為1.
(1)求A,B兩點的坐標;
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網與x軸交于點A、B,點A的坐標為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當△MNC的面積最大時,求點M、N的坐標;
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案