在銳角△ABC中,已知其兩邊a=1,b=3,那么第三邊的變化范圍

[  ]

A.2<c<4
B.2<c≤3
C.2<c<
D.2<c<
答案:D
解析:

在三角形中,當(dāng)較小兩邊平方和等于第三邊的平方時,是直角三角形;當(dāng)大于第三邊的平方時是銳角三角形;當(dāng)小于第三邊的平方時是鈍角三角形.

當(dāng)c是最長邊時,c<,即c<;

當(dāng)b是最長邊時,c>,即c>2.

選D.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則co精英家教網(wǎng)sA=
AD
b
,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA        (1)
同理可得:b2=a2+c2-2accosB      (2)
c2=a2+b2-2abcosC               (3)
這個結(jié)論就是著名的余弦定理,在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3
3
,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB,垂足為點(diǎn)D,則cosA=
ADb
,即AD=bcosA,所以BD=c-AD=c-bcosA.
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2,b2-b2cos2A=a2-(c-bcosA)2,
整理得a2=b2+c2-2bccosA.           ①
同理可得b2=a2+c2-2accosB.         ②
C2=a2+b2-2abcosC.                 ③
這個結(jié)論就是著名的余弦定理.在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
(1)在銳角△ABC中,已知∠A=60°,b=5,c=7,試?yán)芒,②,③求出a,∠B,∠C,的數(shù)值;
(2)已知在銳角△ABC中,三邊a,b,c分別是7,8,9,求出∠A,∠B,∠C的度數(shù).(保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•淮安)在銳角△ABC中,已知BC=6,∠C=60°,sinA=0.8,求AB和AC的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,已知
cosA-
1
2
+|tanB-
3
|=0
,且AB=4,則△ABC的面積等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=數(shù)學(xué)公式,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA
同理可得:b2=a2+c2-2accosB
c2=a2+b2-2abcosC
這個結(jié)論就是著名的余弦定理,在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3數(shù)學(xué)公式,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))

查看答案和解析>>

同步練習(xí)冊答案