精英家教網 > 初中數學 > 題目詳情
如圖,已知第一象限內的點A在反比例函數y=的圖象上,第二象限內的點B在反比例函數y=的圖象上,且OA⊥OB,cosA=,則k的值為( )
A.-3
B.-4
C.-
D.-2
【答案】分析:過A作AE⊥x軸,過B作BF⊥x軸,由OA與OB垂直,再利用鄰補角定義得到一對角互余,再由直角三角形BOF中的兩銳角互余,利用同角的余角相等得到一對角相等,又一對直角相等,利用兩對對應角相等的三角形相似得到三角形BOF與三角形OEA相似,在直角三角形AOB中,由銳角三角函數定義,根據cos∠BAO的值,設出AB與OA,利用勾股定理表示出OB,求出OB與OA的比值,即為相似比,根據面積之比等于相似比的平方,求出兩三角形面積之比,由A在反比例函數y=上,利用反比例函數比例系數的幾何意義求出三角形AOE的面積,進而確定出BOF的面積,再利用k的集合意義即可求出k的值.
解答:解:過A作AE⊥x軸,過B作BF⊥x軸,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOF+∠EOA=90°,
∵∠BOF+∠FBO=90°,
∴∠EOA=∠FBO,
∵∠BFO=∠OEA=90°,
∴△BFO∽△OEA,
在Rt△AOB中,cos∠BAO==,
設AB=,則OA=1,根據勾股定理得:BO=,
∴OB:OA=:1,
∴S△BFO:S△OEA=2:1,
∵A在反比例函數y=上,
∴S△OEA=1,
∴S△BFO=2,
則k=-4.
故選B
點評:此題屬于反比例函數綜合題,涉及的知識有:相似三角形的判定與性質,銳角三角函數定義,勾股定理,以及反比例函數k的幾何意義,熟練掌握相似三角形的判定與性質是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•樂山)如圖,已知第一象限內的點A在反比例函數y=
2
x
的圖象上,第二象限內的點B在反比例函數y=
k
x
的圖象上,且OA⊥OB,cosA=
3
3
,則k的值為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•蘇州)如圖,已知第一象限內的圖象是反比例函數y=
1
x
圖象的一個分支,第二象限內的圖象是反比例函數y=-
2
x
圖象的一個分支,在x軸的上方有一條平行于x軸的直線l與它們分別交于點A、B,過點A、B作x軸的垂線,垂足分別為C、D.若四邊形ABCD的周長為8且AB<AC,則點A的坐標為
1
3
,3)
1
3
,3)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知第一象限內的點A在反比例函數y=
2
x
的圖象上,第二象限內的點B在反比例函數y=
k
x
的圖象上,且OA⊥OB,tanA=
3
,則k的值為( 。

查看答案和解析>>

科目:初中數學 來源:2013-2014學年江蘇東臺創(chuàng)新學校九年級上學期第二次階段測試數學試卷(解析版) 題型:選擇題

如圖,已知第一象限內的點A在反比例函數上,第二象限的點B在反比例函數上,且OA⊥OB,,則k的值為 (      )

A.-3     B.-6      C.-4      D.

 

查看答案和解析>>

科目:初中數學 來源:2012年初中畢業(yè)升學考試(江蘇蘇州卷)數學(解析版) 題型:填空題

如圖,已知第一象限內的圖象是反比例函數圖象的一個分支,第二象限內的圖象是反比例函數圖象的一個分支,在軸上方有一條平行于軸的直線與它們分別交于點A、B,過點A、B作軸的垂線,垂足分別為C、D.若四邊形ACDB的周長為8且AB<AC,則點A的坐標是  ▲  .

 

查看答案和解析>>

同步練習冊答案