如圖,已知AC⊥CM,點(diǎn)B是射線CM上一點(diǎn)(點(diǎn)B不與點(diǎn)C重合),AC=4,∠CAB的平分線AD與射線CM交于點(diǎn)D,過(guò)點(diǎn)D作DN⊥AB,垂足為N.
(1)如果AB=5,求BD的長(zhǎng);
(2)設(shè)AB=x,BD=y,求出y關(guān)于x的函數(shù)解析式,并寫(xiě)出x的取值范圍;
(3)當(dāng)AB取何值時(shí),四邊形ACDN的面積是△BDN面積的3倍?

解:(1)在直角三角形ABC中,∠ACB=90°,AC=4,AB=5,

∵AD是∠CAB的平分線,且DC⊥AC,DN⊥AB,
∴DN=DC.
在Rt△DNB和Rt△ACB中,∠DBN=∠ABC,
∴△DNB∽△ACB.
,
,


(2)在Rt△ACB中,∠ACB=90°,AC=4,AB=x,

∵△DNB∽△ACB,
,


(x>4).

(3)∵S四邊形ACDN=3S△BDN
∴S△ABC=4S△BDN
又∵△ACB∽△DNB,

∴AB=2BD.
設(shè)AB=x,則,
解方程得:
經(jīng)檢驗(yàn)都是原方程的根,但x2=-4不合題意,舍去.
,即時(shí),四邊形ACDN的面積是△BDN面積的3倍.
分析:(1)根據(jù)勾股定理可求BC;根據(jù)角平分線性質(zhì)得CD=DN;根據(jù)△BDN∽△BAC得比例式求解;
(2)思路同上.
(3)四邊形ACDN的面積是△BDN面積的3倍,則S△BDN=S△ABC,即兩個(gè)三角形的相似比為1:2,亦即當(dāng)AB=2BD時(shí),四邊形ACDN的面積是△BDN面積的3倍.
點(diǎn)評(píng):此題考查相似三角形的判定與性質(zhì)、角平分線的性質(zhì)、解方程等知識(shí)點(diǎn),綜合性強(qiáng),難度大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AC⊥CM,點(diǎn)B是射線CM上一點(diǎn)(點(diǎn)B不與點(diǎn)C重合),AC=4,∠CAB的平分線精英家教網(wǎng)AD與射線CM交于點(diǎn)D,過(guò)點(diǎn)D作DN⊥AB,垂足為N.
(1)如果AB=5,求BD的長(zhǎng);
(2)設(shè)AB=x,BD=y,求出y關(guān)于x的函數(shù)解析式,并寫(xiě)出x的取值范圍;
(3)當(dāng)AB取何值時(shí),四邊形ACDN的面積是△BDN面積的3倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,已知AC⊥BD于點(diǎn)O,AB=AD=BC=8cm,則DC=________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知AC⊥BD于點(diǎn)O,AB=AD=BC=8cm,則DC=______cm.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年上海市松江區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,已知AC⊥CM,點(diǎn)B是射線CM上一點(diǎn)(點(diǎn)B不與點(diǎn)C重合),AC=4,∠CAB的平分線AD與射線CM交于點(diǎn)D,過(guò)點(diǎn)D作DN⊥AB,垂足為N.
(1)如果AB=5,求BD的長(zhǎng);
(2)設(shè)AB=x,BD=y,求出y關(guān)于x的函數(shù)解析式,并寫(xiě)出x的取值范圍;
(3)當(dāng)AB取何值時(shí),四邊形ACDN的面積是△BDN面積的3倍?

查看答案和解析>>

同步練習(xí)冊(cè)答案