如圖,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.動(dòng)點(diǎn)M從B點(diǎn)出發(fā)沿線段BC以每秒2個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從C點(diǎn)出發(fā)沿線段CD以每秒1個(gè)單位長度的速度向終點(diǎn)D運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求BC的長;
(2)當(dāng)MN∥AB時(shí),求t的值;
(3)試探究:t為何值時(shí),△MNC為等腰三角形.

【答案】分析:(1)作梯形的兩條高,根據(jù)直角三角形的性質(zhì)和矩形的性質(zhì)求解;
(2)平移梯形的一腰,根據(jù)平行四邊形的性質(zhì)和相似三角形的性質(zhì)求解;
(3)因?yàn)槿呏,每兩條邊都有相等的可能,所以應(yīng)考慮三種情況.結(jié)合路程=速度×時(shí)間求得其中的有關(guān)的邊,運(yùn)用等腰三角形的性質(zhì)和解直角三角形的知識(shí)求解.
解答:解:(1)如圖①,過A、D分別作AK⊥BC于K,DH⊥BC于H,則四邊形ADHK是矩形.
∴KH=AD=3.
在Rt△ABK中,AK=AB•sin45°=4=4BK=AB•cos45°=4=4.
在Rt△CDH中,由勾股定理得,HC==3.
∴BC=BK+KH+HC=4+3+3=10.

(2)如圖②,過D作DG∥AB交BC于G點(diǎn),則四邊形ADGB是平行四邊形.
∵M(jìn)N∥AB,
∴MN∥DG.
∴BG=AD=3.
∴GC=10-3=7.
由題意知,當(dāng)M、N運(yùn)動(dòng)到t秒時(shí),CN=t,CM=10-2t.
∵DG∥MN,
∴∠NMC=∠DGC.
又∠C=∠C,
∴△MNC∽△GDC.
,

解得,

(3)分三種情況討論:
①當(dāng)NC=MC時(shí),如圖③,即t=10-2t,


②當(dāng)MN=NC時(shí),如圖④,過N作NE⊥MC于E.
解法一:
由等腰三角形三線合一性質(zhì)得
EC=MC=(10-2t)=5-t.
在Rt△CEN中,cosC==
又在Rt△DHC中,cosC=,

解得t=
解法二:
∵∠C=∠C,∠DHC=∠NEC=90°,
∴△NEC∽△DHC.


∴t=
③當(dāng)MN=MC時(shí),如圖⑤,過M作MF⊥CN于F點(diǎn).FC=NC=t.
解法一:(方法同②中解法一),
解得
解法二:
∵∠C=∠C,∠MFC=∠DHC=90°,
∴△MFC∽△DHC.
,
,

綜上所述,當(dāng)t=、t=或t=時(shí),△MNC為等腰三角形.
點(diǎn)評(píng):注意梯形中常見的輔助線:平移一腰、作兩條高.構(gòu)造等腰三角形的時(shí)候的題目,注意分情況討論.此題的知識(shí)綜合性較強(qiáng),能夠從中發(fā)現(xiàn)平行四邊形、等腰三角形等,根據(jù)它們的性質(zhì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案