【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為 ,則a的值是( )

A.2
B.2+
C.2
D.2+

【答案】B
【解析】解:過P點(diǎn)作PE⊥AB于E,過P點(diǎn)作PC⊥x軸于C,交AB于D,連接PA.
∵PE⊥AB,AB=2 ,半徑為2,
∴AE= AB= ,PA=2,
根據(jù)勾股定理得:PE= =1,
∵點(diǎn)A在直線y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
∵⊙P的圓心是(2,a),
∴a=PD+DC=2+
故選:B.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用圓的定義和直線與圓的三種位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓.定點(diǎn)稱為圓心,定長稱為半徑;直線與圓有三種位置關(guān)系:無公共點(diǎn)為相離;有兩個公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個唯一的公共點(diǎn)叫做切點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,E是 的中點(diǎn),連接BE、CE,則∠ABE=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)2(100.5y)=﹣(1.5y+2)

(2)(x5)3(x5)

(3)1

(4)x(x9)[x+(x9)]

(5) -=0.5x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建“國家園林城市”,某校舉行了以“愛我黃石”為主題的圖片制作比賽,評委會對200名同學(xué)的參賽作品打分發(fā)現(xiàn),參賽者的成績x均滿足50x100,并制作了頻數(shù)分布直方圖,如圖.

根據(jù)以上信息,解答下列問題:

(1)請補(bǔ)全頻數(shù)分布直方圖;

(2)若依據(jù)成績,采取分層抽樣的方法,從參賽同學(xué)中抽40人參加圖片制作比賽總結(jié)大會,則從成績80x90的選手中應(yīng)抽多少人?

(3)比賽共設(shè)一、二、三等獎,若只有25%的參賽同學(xué)能拿到一等獎,則一等獎的分?jǐn)?shù)線是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的兩條對角線AC和BD相交于點(diǎn)O,并且BD=4,AC=6,BC=

(1)AC與BD有什么位置關(guān)系?為什么?
(2)四邊形ABCD是菱形嗎?為什么.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD垂直平分線段AC,∠BCD=∠ADF,AF⊥AC

(1)證明:四邊形ABDF是平行四邊形;
(2)若AF=DF=5,AD=6,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= +3與坐標(biāo)軸交于A、B兩點(diǎn),⊙O的半徑為2,點(diǎn)P是⊙O上動點(diǎn),△ABP面積的最大值為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 AB=AC,CD⊥ABD,BE⊥ACEBECD相交于點(diǎn)O

1)求證AD=AE;

2)連接OABC,試判斷直線OA,BC的關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ADBC,ABCD,E在線段BC延長線上,AE平分∠BAD.連接DE,若∠ADE3CDE,∠AED60°.

1)求證:∠ABC=∠ADC;

2)求∠CDE的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案