某大學(xué)校園內(nèi)一商店,銷售一種進(jìn)價(jià)為每件20元的臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):
(1)設(shè)此商店每月獲得利潤(rùn)為w(元),求w與x的函數(shù)關(guān)系式,并求出w的最大值;
(2)如果此商店想要每月獲得2000元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?
(3)根據(jù)物價(jià)部門規(guī)定,這種臺(tái)燈的銷售單價(jià)不得高于32元,如果此商店想要每月獲得的利潤(rùn)不低于2000元,那么商店每月的成本最少需要多少元?
(1)w=,2250;(2)30元或40元;(3)3600元

試題分析:(1)根據(jù)總利潤(rùn)=單利潤(rùn)×數(shù)量,即可得到w與x的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)果;
(2)根據(jù)每月獲得2000元的利潤(rùn)結(jié)合(1)中的函數(shù)關(guān)系式即可列方程求解;
(3)由可知拋物線的開口向下,設(shè)成本為(元),再根據(jù)題意列出p關(guān)于x的函數(shù)關(guān)系式,再根據(jù)一次函數(shù)的性質(zhì)即可求得結(jié)果.
(1)=
= -10<0,
∴當(dāng)時(shí),w可取得最大值.
即當(dāng)銷售單價(jià)定為35元時(shí),每月可獲得最大利潤(rùn)2250元;
(2)依題意得.     
解得,.           
即如果此商店想要每月獲得2000元的利潤(rùn),那么銷售單價(jià)應(yīng)定為30元或40元;
(3)∵ ,
∴ 拋物線的開口向下.
∴ 當(dāng)30≤≤40時(shí),≥2000.
≤32,
∴ 30≤≤32.
設(shè)成本為(元),依題意得
,
的增大而減小.
∴ 當(dāng)時(shí),
答:此商店想要每月獲得的利潤(rùn)不低于2000元,每月的成本最少需要3600元.
點(diǎn)評(píng):二次函數(shù)的應(yīng)用是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),是中考常見題,一般難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線向左平移2個(gè)單位后,得到的拋物線解析式是(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與直線AB交于x軸上的一點(diǎn)A,和另一點(diǎn)B(4,n).點(diǎn)P是拋物線A,B兩點(diǎn)間部分上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)AB重合),直線PQ與直線AB垂直,交直線AB于點(diǎn)Q

(1)求拋物線的解析式和cos∠BAO的值。
(2)設(shè)點(diǎn)P的橫坐標(biāo)為用含的代數(shù)式表示線段PQ的長(zhǎng),并求出線段PQ長(zhǎng)的最大值;
(3)點(diǎn)E是拋物線上一點(diǎn),過點(diǎn)E作EF∥AC,交直線AB與點(diǎn)F,若以E、F、A、C為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)的圖像交軸于,交軸于,過畫直線。

(1)求二次函數(shù)的解析式;
(2)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線上的動(dòng)點(diǎn),請(qǐng)判斷是否存在以P、Q、O、C為頂點(diǎn)的四邊形為平行四邊形,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)在軸右側(cè)的點(diǎn)在二次函數(shù)圖像上,以為圓心的圓與直線相切,切點(diǎn)為。且△CHM∽△AOC(點(diǎn)與點(diǎn)對(duì)應(yīng)),求點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,拋物線與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),與直線交于A、D兩點(diǎn)。
⑴直接寫出A、C兩點(diǎn)坐標(biāo)和直線AD的解析式;
⑵如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題10分)如圖,直線x軸,y軸分別交于B,C兩點(diǎn),拋物線經(jīng)過B,C兩點(diǎn),點(diǎn)A是拋物線與x軸的另一個(gè)交點(diǎn)。

(1)求B、C兩點(diǎn)坐標(biāo);
(2)求此拋物線的函數(shù)解析式;
(3)在拋物線上是否存在點(diǎn)P,使,若存在,求出P點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖, 拋物線 交于點(diǎn)A,過點(diǎn)A作軸的平行線,分別交兩條拋物線于點(diǎn)B、C.

則以下結(jié)論:①無論取何值,的值總是正數(shù);②;
③當(dāng)時(shí),;④當(dāng)時(shí),0≤<1;⑤2AB=3AC.其中正確結(jié)論的編號(hào)是           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

與拋物線y=-x2+3x-5的形狀、開口方向都相同,只有位置不同的拋物線是( )
A.y =x2+3x-5B.y=-x2+xC.y=x2+3x-5D.y=—x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的頂點(diǎn)坐標(biāo)是___________________。

查看答案和解析>>

同步練習(xí)冊(cè)答案