如圖,在正方形ABCD中,E為BC上一點(diǎn),將正方形折疊,使A點(diǎn)與E點(diǎn)重合,折痕是MN,若數(shù)學(xué)公式,CE+CD=10,求△ANE的面積.

解:設(shè)BE=x,則AB=3x,CE=2x,CD=3x,
∵CE+CD=10,
即2x+3x=10,x=2,
即BE=2,AB=6,
設(shè)BN=k,則AN=NE=6-k,
由勾股定理得:(6-k)2=k2+22
解得k=,
∴AN=6-k=,
S△ANE=AN•BE=××2=
分析:由題中的比值關(guān)系,設(shè)出相應(yīng)的未知數(shù),得到BE,AE,CE,CD的代數(shù)式,由CE+CD=10得到這些線段的具體值,由折疊可知AN=NE,那么利用勾股定理可求得BN長(zhǎng),進(jìn)而求得AN.S△ANE=AN•BE.
點(diǎn)評(píng):本題考查了翻折變換,翻折前后對(duì)應(yīng)邊相等,翻折中較復(fù)雜的計(jì)算,需找到翻折后相應(yīng)的直角三角形,利用勾股定理求解所需線段.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個(gè)三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線精英家教網(wǎng),交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度;
(3)若以點(diǎn)O,D,E,C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點(diǎn)E是邊AC的中點(diǎn),連接DE,DE的延長(zhǎng)線與邊BC相交于點(diǎn)F,AG∥BC,交DE于點(diǎn)G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長(zhǎng)為3+
3

(1)如圖①,正方形EFPN的頂點(diǎn)E、F在邊AB上,頂點(diǎn)N在邊AC上,在正三角形ABC及其內(nèi)部,以點(diǎn)A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長(zhǎng);
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點(diǎn)P、N分別在邊CB、CA上,求這兩個(gè)正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案