【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的邊AB⊥x軸,垂足為A,C的坐標(biāo)為(1,0),反比例函數(shù)y= (x>0)的圖象經(jīng)過BC的中點(diǎn)D,交AB于點(diǎn)E.已知AB=4,BC=5.求k的值
【答案】k=5
【解析】
先由勾股定理求出AC的長度,得到點(diǎn)C坐標(biāo),再確定出點(diǎn)B的坐標(biāo),由中點(diǎn)坐標(biāo)公式得出點(diǎn)D的坐標(biāo),最后把點(diǎn)D坐標(biāo)代入反比例函數(shù)解析式中即可求得k的值.
∵在Rt△ABC中,AB=4,BC=5,
∴AC===3,
∵點(diǎn)C坐標(biāo)(1,0),
∴OC=1,
∴OA=OC+AC=4,
∴點(diǎn)A坐標(biāo)(4,0),
∴點(diǎn)B(4,4),
∵點(diǎn)C(1,0),點(diǎn)B(4,4),
∴BC的中點(diǎn)D(,2),
∵反比例函數(shù)y=(x>0)的圖象經(jīng)過BC的中點(diǎn)D,
∴k=xy=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,,,,P為邊BC上一動(dòng)點(diǎn), 于E,于F,M為EF的中點(diǎn),則AM的最小值是( )
A.2.5B.2.4C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).
(1)將線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到對應(yīng)線段BE.當(dāng)BE與CD第一次平行時(shí),畫出點(diǎn)A運(yùn)動(dòng)的路徑,并直接寫出點(diǎn)A運(yùn)動(dòng)的路徑長;
(2)線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,直接寫出這個(gè)旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ACDE 是證明勾股定理時(shí)用到的一個(gè)圖形,a 、b 、c 是 RtABC和 RtBED 的邊長,已知,這時(shí)我們把關(guān)于 x 的形如二次方程稱為“勾系一元二次方程”.
請解決下列問題:
(1)寫出一個(gè)“勾系一元二次方程”;
(2)求證:關(guān)于 x 的“勾系一元二次方程”,必有實(shí)數(shù)根;
(3)若 x 1是“勾系一元二次方程” 的一個(gè)根,且四邊形 ACDE 的周長是6,求ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線與反比例函數(shù)的圖象交于,兩點(diǎn),軸(點(diǎn)在點(diǎn)的右側(cè)),且,連接,過點(diǎn)作軸于點(diǎn),交反比例函數(shù)圖象于點(diǎn).
(1)求的值和反比例函數(shù)的解析式;
(2)填空:不等式的解集為______;
(3)當(dāng)平分時(shí),求的值;
(4)如圖②,取中點(diǎn),連接,,,當(dāng)四邊形為平行四邊形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D,交BC于點(diǎn)E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB分別切圓O于A、B兩點(diǎn),C為劣弧AB上一點(diǎn),∠APB=40°,則∠ACB=( ).
A.70°B.80°C.110°D.140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在梯形ABCD中,AB//CD,AB=12,CD=7,點(diǎn)E在邊AD上,,過點(diǎn)E作EF//AB交邊BC于點(diǎn)F.
(1)求線段EF的長;
(2)設(shè),,聯(lián)結(jié)AF,請用向量表示向量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(k-1)x2+2kx+2=0
(1)求證:無論k為何值,方程總有實(shí)數(shù)根。
(2)設(shè)x1,x2是方程(k-1)x2+2kx+2=0的兩個(gè)根,記S=++ x1+x2,S的值能為2嗎?若能,求出此時(shí)k的值。若不能,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com