如圖,△ABC以點(diǎn)O為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后得到△A′B′C′.ED是△ABC的中位線,經(jīng)旋轉(zhuǎn)后為線段E′D′.已知BC=4,則E′D′=
A.2B.3C.4D.1.5
A。
【考點(diǎn)】旋轉(zhuǎn)的性質(zhì),三角形中位線定理

試題分析:∵△ABC以點(diǎn)O為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后得到△A′B′C′,∴△ABC≌△A′B′C′。
∴B′C′=BC=4。
∵D′E′是△A′B′C′的中位線,∴D′E′=B′C′=×4=2。
故選A。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,四邊形ABCD的位置如圖所示,解答下列問題:

(1)將四邊形ABCD先向左平移4個(gè)單位,再向下平移6個(gè)單位,得到四邊形A1B1C1D1,畫出平移后的四邊形A1B1C1D1;
(2)將四邊形A1B1C1D1繞點(diǎn)A1逆時(shí)針旋轉(zhuǎn)90°,得到四邊形A1B2C2D2,畫出旋轉(zhuǎn)后的四邊形A1B2C2D2,并寫出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖形中是中心對(duì)稱圖形的是【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)點(diǎn)P是△ABC內(nèi)任意一點(diǎn).現(xiàn)給出如下結(jié)論:
①過點(diǎn)P至少存在一條直線將△ABC分成周長(zhǎng)相等的兩部分;
②過點(diǎn)P至少存在一條直線將△ABC分成面積相等的兩部分;
③過點(diǎn)P至多存在一條直線將△ABC分成面積相等的兩部分;
④△ABC內(nèi)存在點(diǎn)Q,過點(diǎn)Q有兩條直線將其平分成面積相等的四個(gè)部分.
其中結(jié)論正確的是   .(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請(qǐng)按下列要求畫圖:
①將△ABC先向右平移4個(gè)單位長(zhǎng)度、再向上平移2個(gè)單位長(zhǎng)度,得到△A1B1C1,畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點(diǎn)M成中心對(duì)稱,請(qǐng)直接寫出對(duì)稱中心M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,長(zhǎng)、寬分別為2和1的矩形ABCD的邊上有一動(dòng)點(diǎn)P,沿A→B→C→D→A運(yùn)動(dòng)一周,則點(diǎn)P的縱坐標(biāo)y與P所走過的路程S之間的函數(shù)關(guān)系用圖象表示大致是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將△ABC繞其中一個(gè)頂點(diǎn)順時(shí)針連續(xù)旋轉(zhuǎn)n′1、n′2、n′3所得到的三角形和△ABC的對(duì)稱關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

小明從鏡子里看到鏡子對(duì)面電子鐘的像如圖所示,則此刻的實(shí)際時(shí)間是(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

下列幾何圖形中:(1)平行四邊形;(2)線段;(3)角;(4)圓;(5)正方形;(6)任意三角形.其中一定是軸對(duì)稱圖形的有_____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案