如圖,已知AB=AC,∠A=36°,AC的垂直平分線MN交AB于D,AC于M.以下結(jié)論:
①△BCD是等腰三角形;②射線CD是△ACB的角平分線;③△BCD的周長C△BCD=AB+BC;④△ADM≌△BCD.
正確的有(  )
分析:根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理由AB=AC,∠A=36°可得到∠B=∠ACB=72°,再根據(jù)線段垂直平分線的性質(zhì)得到DA=DC,根據(jù)等腰三角形的性質(zhì)有∠ACD=∠A=36°,可計算出∠BCD=72°-36°=36°,∠BDC=180°-∠B-∠BCD=72°,則CB=CD,可對①進(jìn)行判斷;根據(jù)三角形的角平分線的定義可對②進(jìn)行判斷;根據(jù)DA=DC和
三角形周長的定義可得到△BCD的周長C△BCD=DB+DC+BC=DB+DA+BC=AB+BC,則可對③進(jìn)行判斷;由于△ADM為直角三角形,而△BCD為頂角為36°的等腰三角形,
可對④進(jìn)行判斷.
解答:解:∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°,
∵AC的垂直平分線MN交AB于D,
∴DA=DC,
∴∠ACD=∠A=36°,
∴∠BCD=72°-36°=36°,
∴∠BDC=180°-∠B-∠BCD=72°,
∴CB=CD,
∴△BCD是等腰三角形,所以①正確;
∵∠BCD=36°,∠ACD=36°,
∴CD平分∠ACB,
∴線段CD為△ACB的角平分線,所以②錯誤;
∵DA=DC,
∴△BCD的周長C△BCD=DB+DC+BC=DB+DA+BC=AB+BC,所以③正確;
∵△ADM為直角三角形,而△BCD為頂角為36°的等腰三角形,
∴△ADM不等全等于△BCD,所以④錯誤.
故選C.
點評:本題考查了全等三角形的判定與性質(zhì):有兩組邊對應(yīng)相等,且它們所夾的角也相等,那么這兩個三角形全等;全等三角形的對應(yīng)邊相等.也考查了線段垂直平分線的性質(zhì)以及等腰三角形的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,則∠BFD的度數(shù)是(  )
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,已知AB=AC,D是BC的中點,E是AD上的一點,圖中全等三角形有幾對(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,已知AB=AC,AD=AE.求證BD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,已知AB=AC,AD=AE,BD=EC,則圖中有
2
對全等三角形,它們是
△ABD≌△AEC
;
△ABE≌△ADC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步練習(xí)冊答案