△ABC中,AB=5,AC=3,則BC邊上的中線AD的長l的取值范圍是( )
A.1<l<4
B.3<l<5
C.2<l<3
D.0<l<5
【答案】分析:根據(jù)已知可求得BC的取值范圍,再根據(jù)中線的定義即可求得BD的取值范圍,從而再根據(jù)三角形三邊關(guān)系求得AD的取值范圍.
解答:解:延長AD到E,使AD=DE,連接BE,
∵AD=DE,∠ADC=∠BDE,BD=DC,
∴△ADC≌△EDB(SAS)
∴BE=AC=3,
在△AEB中,AB-BE<AE<AB+BE,
即5-3<2AD<5+3,
∴1<AD<4,
∴l(xiāng)的取值范圍是1<l<4,
故選A.
點評:此題主要考查三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,∠A=36°,
(1)用尺規(guī)作圖的方法,過B點作∠ABC的平分線交AC于D(不寫作法,保留作圖痕跡);
(2)求證:BC=BD=AD;
(3)求證:AD2=AC•DC;
(4)設(shè)
CDDA
=x,求x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,在△ABC中,AB=AC,點D,E在直線BC上運動.如果∠DAE=l05°,△ABD∽△ECA,則∠BAC=
30
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)△ABC中,AB=AC,D、E分別是AB、AC的中點,若AB=4,BC=6,則△ADE的周長是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、在△ABC中,AB=AC,BD是△ABC中線,已知△ABD和△BDC的周長之差為6,△ABC的周長是30,求這個等腰三角形的三邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在鈍角△ABC中,AB=AC,以BC為直徑作⊙O,⊙O與BA、CA的延長線分別交于D、E兩點精英家教網(wǎng),連接AO、BE、DC.
(1)求證:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度數(shù).

查看答案和解析>>

同步練習冊答案