如圖,Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于D,OE∥AB交BC于E,連DE.
(1)求證:DE為⊙O切線;
(2)若⊙O的半徑為3,DE=4,求AD之長.

【答案】分析:(1)連OD,證明△OED≌△OEC,從而得到∠ODE=90°.
(2)連CD,可得CD⊥AB,再證明ED直角三角形BCD斜邊的中線,可得BC,利用面積法求出CD,再利用勾股定理求AD.
解答:(1)證明:連接OD,如圖;
∵OE∥AB,
∴∠ODA=∠DOE,∠OAD=∠COE.(1分)
∵OD=OA,
∴∠ODA=∠OAD.
∴∠DOE=∠COE.
又∵OC=OD,OE=OE,
∴△OED≌△OEC.(3分)
∴∠ECO=∠EDO.
∵∠ECO=90°,
∴∠EDO=90°.
∴DE為⊙O切線.(4分)

(2)解:連接CD,
∵AC為⊙O的直徑,
∴∠ADC=90°.(5分)
∵ED、EC是⊙O的切線,
∴ED=EC,又∠BDC=90°.
∴ED=EC=EB=4.
∴在Rt△ACB中,AB=10.(6分)
∵AC•BC=AB•CD,
∴CD=4.8.(7分)
∴在Rt△ADC中AD=.(8分)
〔其他解法類似給分〕
點評:熟練掌握切線的判定定理和切線長定理.熟練運用勾股定理進行幾何計算.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個三角形,且要求其中一個三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點邊上一點,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(2)求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長.

查看答案和解析>>

同步練習冊答案