如圖所示,在正方形ABCD內(nèi)作等邊△ADE,則∠EAC的度數(shù)為________.

15°
分析:根據(jù)正方形的性質(zhì)求得∠CAD的度數(shù),根據(jù)等邊三角形的性質(zhì)求得∠DAE的度數(shù),從而求解.
解答:∵四邊形ABCD是正方形,
∴∠BAD=90°,AC平分∠BAD,
∴∠CAD=45°.
∵△ADE是等邊三角形,
∴∠DAE=60°,
∴∠EAC=15°.
故答案為15°.
點評:此題綜合考查了正方形的性質(zhì)和等邊三角形的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在正方形ABCD中,AB=2,兩條對角線相交于點O,以O(shè)B、OC為鄰邊作第1個正方形OBB1C,對角線相交于點A1;再以A1B1、A1C為鄰邊作第2個正方形A1B1C1C對角線相交于點O1;再以O(shè)1B1、O1C1為鄰邊作第3個正方形O1B1B2C1,…依此類推.
(1)求第1個正方形OBB1C的邊長a1和面積S1
(2)寫出第2個正方形A1B1C1C和第3個正方形的邊長a2,a3和面積S2,S3;
(3)猜想第n個正方形的邊長an和面積Sn.(不需證明).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在正方形ABCD中,DE=EC,AD=4FD,則tan∠FBE=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鳳陽縣模擬)如圖所示,在正方形ABCD的對角線上取點E,使得∠BAE=15°,連結(jié)AE,CE.延長CE到F,連結(jié)BF,使得BC=BF.若AB=1,則下列結(jié)論:①AE=CE;②F到BC的距離為
2
2
;③BE+EC=EF;④S△AED=
1
4
+
2
8
;⑤S△EBF=
3
12
.其中正確的是
①③⑤
①③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在正方形ABCD中,△PCB和△QCD是正三角形,BP與QD相交于M,QC與PB相交于F,請你猜想QM與PM的大小關(guān)系?并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在正方形網(wǎng)格上有一個△ABC.
(1)畫出△ABC關(guān)于直線MN的對稱圖形△A1B1C1
(2)畫出△ABC關(guān)于點O的對稱圖形△A2B2C2;
(3)若網(wǎng)格上的最小正方形邊長為1,求△ABC的面積;
(4)△A2B2C2能否由△A1B1C1平移得到?能否由△A1B1C1旋轉(zhuǎn)得到?這兩個三角形(指△A1B1C1與△A2B2C2)存在什么樣的圖形變換關(guān)系?

查看答案和解析>>

同步練習冊答案