已知:如圖,在△ABC中,AB=BC,D是AC中點(diǎn),BE平分∠ABD交AC于點(diǎn)E,點(diǎn)O是AB上一點(diǎn),⊙O過B、E兩點(diǎn), 交BD于點(diǎn)G,交AB于點(diǎn)F.

(1)求證:AC與⊙O相切;

(2)當(dāng)BD=2,sinC=時(shí),求⊙O的半徑.

答案:
解析:

  (1)證明:連接OE  1分

  ∵AB=BC且D是BC中點(diǎn)

  ∴BD⊥AC

  ∵BE平分∠ABD

  ∴∠ABE=∠DBE

  ∵OB=OE

  ∴∠OBE=∠OEB

  ∴∠OEB=∠DBE

  ∴OE∥BD

  ∴OE⊥AC

  ∴AC與⊙O相切  2分

  (2)∵BD=2,sinC=,BD⊥AC

  ∴BC=4  3分

  ∴AB=4

  設(shè)⊙O的半徑為r,則AO=4-r

  ∵AB=BC

  ∴∠C=∠A

  ∴sinA=sinC=

  ∵AC與⊙O相切于點(diǎn)E,

  ∴OE⊥AC

  ∴sinA=  4

  ∴r=  5


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過A,D兩點(diǎn)作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊答案