將拋物線(xiàn)y=(x-1)2+2沿直角坐標(biāo)平面先向左平移1個(gè)單位,再向上平移2個(gè)單位,得到了拋物線(xiàn)的解析式為


  1. A.
    y=(x-2)2+4
  2. B.
    y=x2+4
  3. C.
    y=(x-2)2
  4. D.
    y=x2
B
分析:根據(jù)“左加右減、上加下減”的原則進(jìn)行解答即可.
解答:由“左加右減、上加下減”的原則可知,把拋物線(xiàn)y=(x-1)2+2向左平移1個(gè)單位,再向上平移2個(gè)單位,那么所得拋物線(xiàn)的解析式是y=(x-1+1)2+2+2,
即y=x2+4,
故選B.
點(diǎn)評(píng):本題考查的是二次函數(shù)的圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

43、將拋物線(xiàn)y=x2+2x-3向左平移4個(gè)單位,再向下平移3個(gè)單位,所得拋物線(xiàn)的函數(shù)表達(dá)式為
y=x2+10x+18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧波模擬)在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y1=ax2+3x+c的圖象經(jīng)過(guò)原點(diǎn)及點(diǎn)A(1,2),與x軸相交于另一點(diǎn)B.
(1)求:二次函數(shù)y1的解析式及B點(diǎn)坐標(biāo);
(2)若將拋物線(xiàn)y1以x=3為對(duì)稱(chēng)軸向右翻折后,得到一個(gè)新的二次函數(shù)y2,已知二次函數(shù)y2與x軸交于兩點(diǎn),其中右邊的交點(diǎn)為C點(diǎn).點(diǎn)P在線(xiàn)段OC上,從O點(diǎn)出發(fā)向C點(diǎn)運(yùn)動(dòng),過(guò)P點(diǎn)作x軸的垂線(xiàn),交直線(xiàn)AO于D點(diǎn),以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)D、點(diǎn)E、點(diǎn)F也隨之運(yùn)動(dòng));
①當(dāng)點(diǎn)E在二次函數(shù)y1的圖象上時(shí),求OP的長(zhǎng).
②若點(diǎn)P從O點(diǎn)出發(fā)向C點(diǎn)做勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,同時(shí)線(xiàn)段OC上另一個(gè)點(diǎn)Q從C點(diǎn)出發(fā)向O點(diǎn)做勻速運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度(當(dāng)Q點(diǎn)到達(dá)O點(diǎn)時(shí)停止運(yùn)動(dòng),P點(diǎn)也同時(shí)停止運(yùn)動(dòng)).過(guò)Q點(diǎn)作x軸的垂線(xiàn),與直線(xiàn)AC交于G點(diǎn),以QG為邊在QG的左側(cè)作正方形QGMN(當(dāng)Q點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)G、點(diǎn)M、點(diǎn)N也隨之運(yùn)動(dòng)),若P點(diǎn)運(yùn)動(dòng)t秒時(shí),兩個(gè)正方形分別有一條邊恰好落在同一條直線(xiàn)上(正方形在x軸上的邊除外),求此刻t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將拋物線(xiàn)y=-(x-1)2-2向左平移1個(gè)單位,再向上平移1個(gè)單位,則平移后拋物線(xiàn)的表達(dá)式
y=-x2-1
y=-x2-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將拋物線(xiàn)y=2x2向下平移1個(gè)單位,得到的拋物線(xiàn)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將拋物線(xiàn)y=-2(x-1)2-2向左平移1個(gè)單位,再向上平移1個(gè)單位,得到的拋物線(xiàn)的表達(dá)式為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案