⊙O1、⊙O2的半徑分別為3cm、4cm,圓心距O1O2為5cm,則這兩圓的位置關系是( )
A.內(nèi)切B.外切C.內(nèi)含D.相交
D.

試題分析:∵4+3=7>5,
∴兩圓相交.
故選D.
考點: 圓與圓的位置關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀材料:
已知,如圖(1),在面積為S的△ABC中, BC=a,AC="b," AB=c,內(nèi)切圓O的半徑為r.連接OA、OB、OC,△ABC被劃分為三個小三角形.
.


(1)類比推理:若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),如圖(2),各邊長分別為AB=a,BC=b,CD=c,AD=d,求四邊形的內(nèi)切圓半徑r;
(2)理解應用:如圖(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1與⊙O2分別為△ABD與△BCD的內(nèi)切圓,設它們的半徑分別為r1和r2,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC是等邊三角形,⊙O過點B,C,且與BA,CA的延長線分別交于點D,E,弦DF∥AC,EF的延長線交BC的延長線于點G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙的半徑為,正方形頂點坐標為,頂點在⊙上運動.
(1)當點運動到與點、在同一條直線上時,試證明直線與⊙相切;
(2)當直線與⊙相切時,求所在直線對應的函數(shù)關系式;
(3)設點的橫坐標為,正方形的面積為,求之間的函數(shù)關系式,并求出的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在某張航海圖上,標明了三個觀測點的坐標,如圖,O(0,0)、B(6,0)、C(6,8),由三個觀測點確定的圓形區(qū)域是海洋生物保護區(qū).
(1)求圓形區(qū)域的面積;
(2)某時刻海面上出現(xiàn)-漁船A,在觀測點O測得A位于北偏東45°,同時在觀測點B測得A位于北偏東30°,求觀測點B到A船的距離.(≈1.7,保留三個有效數(shù)字);
(3)當漁船A由(2)中位置向正西方向航行時,是否會進入海洋生物保護區(qū)?通過計算回答。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,以點P(2,0)為圓心,為半徑作圓,點M(a,b) 是⊙P上的一點,設,則的取值范圍是       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙O1、⊙O2的半徑不相等,⊙O1的半徑長為3,若⊙O2上的點A滿足AO1=3,則⊙O1與⊙O2的位置關系是(   )
A.相交或相切B.相切或相離C.相交或內(nèi)含 D.相切或內(nèi)含

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,半徑為的⊙O是△ABC的外接圓,∠CAB=60°,則BC=         

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一個扇形的圓心角為60°,它所對的弧長為πcm,則這個扇形的半徑為                .

查看答案和解析>>

同步練習冊答案