(2013•宜賓)如圖,△ABC是正三角形,曲線CDEF叫做正三角形的漸開(kāi)線,其中弧CD、弧DE、弧EF的圓心依次是A、B、C,如果AB=1,那么曲線CDEF的長(zhǎng)是
分析:弧CD,弧DE,弧EF的圓心角都是120度,半徑分別是1,2,3,利用弧長(zhǎng)的計(jì)算公式可以求得三條弧長(zhǎng),三條弧的和就是所求曲線的長(zhǎng).
解答:解:弧CD的長(zhǎng)是
120π×1
180
=
3
,
弧DE的長(zhǎng)是:
120π×2
180
=
3

弧EF的長(zhǎng)是:
120π×3
180
=2π,
則曲線CDEF的長(zhǎng)是:
3
+
3
+2π=4π.
故答案是:4π.
點(diǎn)評(píng):本題考查了弧長(zhǎng)的計(jì)算公式,理解弧CD,弧DE,弧EF的圓心角都是120度,半徑分別是1,2,3是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宜賓)如圖,一個(gè)含有30°角的直角三角形的兩個(gè)頂點(diǎn)放在一個(gè)矩形的對(duì)邊上,若∠1=25°,則∠2=
115°
115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宜賓)如圖,在△ABC中,∠ABC=90°,BD為AC的中線,過(guò)點(diǎn)C作CE⊥BD于點(diǎn)E,過(guò)點(diǎn)A作BD的平行線,交CE的延長(zhǎng)線于點(diǎn)F,在AF的延長(zhǎng)線上截取FG=BD,連接BG、DF.若AG=13,CF=6,則四邊形BDFG的周長(zhǎng)為
20
20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宜賓)如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足
CF
FD
=
1
3
,連接AF并延長(zhǎng)交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.給出下列結(jié)論:
①△ADF∽△AED;②FG=2;③tan∠E=
5
2
;④S△DEF=4
5

其中正確的是
①②④
①②④
(寫(xiě)出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宜賓)如圖,AB是⊙O的直徑,∠B=∠CAD.
(1)求證:AC是⊙O的切線;
(2)若點(diǎn)E是
BD
的中點(diǎn),連接AE交BC于點(diǎn)F,當(dāng)BD=5,CD=4時(shí),求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宜賓)如圖,拋物線y1=x2-1交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B,將此拋物線向右平移4個(gè)單位得拋物線y2,兩條拋物線相交于點(diǎn)C.
(1)請(qǐng)直接寫(xiě)出拋物線y2的解析式;
(2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),且滿足∠CPA=∠OBA,求出所有滿足條件的P點(diǎn)坐標(biāo);
(3)在第四象限內(nèi)拋物線y2上,是否存在點(diǎn)Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及h的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案