【題目】閱讀下面的文字,解答問題:

是一個無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分無法全部寫出來,但是我們可以想辦法把它表示出來.因為,所以的整數(shù)部分為,將減去其整數(shù)部分后,得到的差就是小數(shù)部分,于是的小數(shù)部分為

1)求出的整數(shù)部分和小數(shù)部分:

2)求出的整數(shù)部分和小數(shù)部分;

3)如果的整數(shù)部分是,小數(shù)部分是,求出的值.

【答案】1的整數(shù)部分為小數(shù)部分為;(2的整數(shù)部分為,的小數(shù)部分為;(3

【解析】

1)利用,得出的取值范圍,進而得出答案;
2)利用12,進而得出答案;
3)利用的取值范圍,進而求出答案.

解:(1

的整數(shù)部分為

小數(shù)分部是:

故答案為:2,

2)∵12

的整數(shù)部分為,那么小數(shù)部分為:

故答案為:2,

3的整數(shù)部分是,小數(shù)部分是,

那么的整數(shù)部分為3,即,小數(shù)部分為,即,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.

[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]

(1)如圖甲,當頂點G運動到與點A重合時,求證:EC+CF=BC;

(2)知識探究:

①如圖乙,當頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫出證明過程);

②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;

(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當>2時,求EC的長度。

[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是定長線段,圓心OAB的中點,AE、BF為切線,E、F為切點,滿足AE=BF,在上取動點G,國點G作切線交AE、BF的延長線于點D、C,當點G運動時,設(shè)AD=y,BC=x,則yx所滿足的函數(shù)關(guān)系式為( 。

A. 正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)

B. 一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)

C. 反比例函數(shù)y=(k為常數(shù),k≠0,x>0)

D. 二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點A在第四象限,點Bx軸正半軸上,在△OAB中,∠OAB90°,ABAO6,點P為線段OA上一動點(點P不與點A和點O重合),過點POA的垂線交x軸于點C,以點C為正方形的一個頂點作正方形CDEF,使得點D在線段CB上,點E在線段AB上.

1)①求直線AB的函數(shù)表達式.

②直接寫出直線AO的函數(shù)表達式   ;

2)連接PF,在RtCPF中,∠CFP90°時,請直接寫出點P的坐標為   ;

3)在(2)的前提下,直線DPy軸于點H,交CF于點K,在直線OA上存在點Q.使得△OHQ的面積與△PKE的面積相等,請直接寫出點Q的坐標   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,、分別是的平分線,,交,交,,,結(jié)論①;②;③;④.其中正確的有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一列動車從甲地開往乙地, 一列普通列車從乙地開往甲地,兩車均勻速行駛并同時出發(fā),設(shè)普通列車行駛的時間為 (小時),兩車之間的距離為 (千米),如圖中的折線表示之間的函數(shù)關(guān)系,下列說法:①動車的速度是千米/小時;②點B的實際意義是兩車出發(fā)后小時相遇;③甲、乙兩地相距千米;④普通列車從乙地到達甲地時間是小時,其中不正確的有( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,共享單車服務的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,BCE=71°,CE=54cm.

(1)求單車車座E到地面的高度;(結(jié)果精確到1cm)

(2)根據(jù)經(jīng)驗,當車座ECB的距離調(diào)整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結(jié)果精確到0.1cm)

(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】幾何模型:

條件:如圖1,A、B是直線同旁的兩個定點.

問題:在直線上確定一點P,使PA+PB的值最。

方法:作點A關(guān)于直線的對稱點A′,連接A′B于點P,則PA+PB=A′B的值最。ú槐刈C明).

模型應用:

(1)如圖2,已知平面直角坐標系中兩定點A(0,-1),B(2,-1),Px軸上一動點, 則當PA+PB的值最小時,點P的橫坐標是______,此時PA+PB的最小值是______;

(2)如圖3,正方形ABCD的邊長為2,EAB的中點,PAC上一動點.由正方形對稱性可知,BD關(guān)于直線AC對稱,連接BD,則PB+PE的最小值是______;

(3)如圖4,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一動點P,則PD+PE的最小值為

(4)如圖5,在菱形ABCD中,AB=8,∠B=60°,點G是邊CD邊的中點,點E、F分別是AG、AD上的兩個動點,則EF+ED的最小值是_______________.

查看答案和解析>>

同步練習冊答案