在矩形ABCD中,AB=10,BC=12,E為DC的中點(diǎn),連接BE,作AF⊥BE,垂足為F.

(1)求證:△BEC∽△ABF;

(2)求AF的長.

 

【答案】

(1)證明見解析;(2).

【解析】

試題分析:由矩形ABCD中,AB=10,BC=12,E為DC的中點(diǎn),由勾股定理可求得BE的長,又由AF⊥BE,易證得△ABF∽△BEC,然后由相似三角形的對(duì)應(yīng)邊成比例,求得AF的長.

試題解析:(1)證明:在矩形ABCD中,有

∠C=∠ABC=∠ABF+∠EBC=90°,

∵AF⊥BE,∴∠AFB=∠C=90°

∴∠ABF+∠BAF=90°

∴∠BAF=∠EBC

∴△BEC∽△ABF

(2)解:在矩形ABCD中,AB=10,∴CD=AB=10,

∵E為DC的中點(diǎn),∴CE=5,

又BC=12,在Rt△BEC中,由勾股定理得BE=13,

由△ABF∽△BEC得

,解得AF=

考點(diǎn): 1.相似三角形的判定與性質(zhì);2.勾股定理;3.矩形的性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,在矩形ABCD中,DE平分∠ADC交BC于點(diǎn)E,EF⊥AD交AD于點(diǎn)F,若EF=3,AE=5,則AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4,BC=7,P是BC邊上與B點(diǎn)不重合的動(dòng)點(diǎn),過點(diǎn)P的直線交CD的延長線于R,交AD于Q(Q與D不重合),且∠RPC=45°,設(shè)BP=x,梯形ABPQ的面積為y,求y與x之間的函數(shù)關(guān)系,并求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,F(xiàn)是BC邊上一點(diǎn),AF的延長線交DC的延長線于G,DE⊥AG于E,且DE=DC.求證:AE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在矩形ABCD中,AB=8,AD=6,E為AB邊上一點(diǎn),連接DE,過C作CF垂直DE.
(1)求證:△CDF∽△DEA;
(2)若設(shè)CF=x,DE=y,求y與x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AF、BE、CE、DF分別是矩形的四個(gè)角的角平分線,E、M、F、N是其交點(diǎn),求證:四邊形EMFN是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案