精英家教網 > 初中數學 > 題目詳情

【題目】下列計算中,正確的是(
A.a0=1
B.a1=﹣a
C.a3a2=a5
D.2a2+3a3=5a5

【答案】C
【解析】解:A、a0=1(a≠0),故此選項錯誤; B、a1= (a≠0),故此選項錯誤;
C、a3a2=a5 , 正確;
D、2a2+3a3 , 無法計算,故此選項錯誤;
故選:C.
【考點精析】利用零指數冪法則和整數指數冪的運算性質對題目進行判斷即可得到答案,需要熟知零次冪和負整數指數冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數);aman=am+n(m、n是正整數);(amn=amn(m、n是正整數);(ab)n=anbn(n是正整數);am/an=am-n(a不等于0,m、n為正整數);(a/b)n=an/bn(n為正整數).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,PA、PB分別與⊙O相切于點A、B,點M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM=AN;
(2)若⊙O的半徑R=3,PA=9,求OM的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,BAC=30°,AB=8,AD平分∠BAC,點PQ分別是AB、AD邊上的動點,則PQ+BQ的最小值是

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知數軸上點A表示的數為8,B是數軸上位于點A左側一點,且AB=22,動點PA點出發(fā),以每秒5個單位長度的速度沿數軸向左勻速運動,設運動時間為t(t>0)秒.

(1)數軸上點B表示的數   ;點P表示的數   (用含t的代數式表示)

(2)MAP的中點,NBP的中點,在點P運動的過程中,線段MN的長度是   

(3)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數軸向右勻速運動,若點P、Q同時出發(fā),問多少秒時P、Q之間的距離恰好等于2?

(4)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)已知函數的圖象與反比例函數的圖象的一個交點為A,則= ________

(2)如果滿足,試求代數式的值.

(3)已知,,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題
(1)計算: +20170﹣| ﹣2|+1
(2)計算: ÷(2x﹣

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④圖中小于平角的角有6個;其中正確的結論有幾個(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】A、B兩城相距600千米,一輛客車從A城開往B城,車速為每小時80千米,同時一輛出租車從B城開往A城,車速為毎小時100千米,設客車出時間為t.
(1)【探究】 若客車、出租車距B城的距離分別為y1、y2 , 寫出y1、y2關于t的函數關系式,并計算當y1=200千米時y2的値.
(2)【發(fā)現(xiàn)】 設點C是A城與B城的中點,
(Ⅰ)哪個車會先到達C?該車到達C后再經過多少小時,另一個車會到達C?
(Ⅱ)若兩車扣相距100千米時,求時間t.
(3)【決策】 己知客車和出租車正好在A,B之間的服務站D處相遇,此時出租車乘客小王突然接到開會通知,需要立即返回,此時小王有兩種選擇返回B城的方案:
方案一:繼續(xù)乘坐出租車,到達A城后立刻返回B城(設出租車調頭時間忽略不計);
方案二:乘坐客車返回城.
試通過計算,分析小王選擇哪種方式能更快到達B城?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角∠O的內部有一滑動桿AB,當端點A沿直線AO向下滑動時,端點B會隨之自動地沿直線OB向左滑動,如果滑動桿從圖中AB處滑動到A′B′處,那么滑動桿的中點C所經過的路徑是(
A.直線的一部分
B.圓的一部分
C.雙曲線的一部分
D.拋物線的一部分

查看答案和解析>>

同步練習冊答案