如圖1,點A是線段BC上一點,△ABD和△ACE都是等邊三角形.

(1)連結(jié)BE,CD,求證:BE=CD;

(2)如圖2,將△ABD繞點A順時針旋轉(zhuǎn)得到△AB′D′.

①當旋轉(zhuǎn)角為多少度時,邊AD′落在AE上;

②在①的條件下,延長DD’交CE于點P,連接BD′,CD′.當線段AB、AC滿足什么數(shù)量關(guān)系時,BD′與CD′相等?并給予證明.

 

【答案】

(1)詳見解析;(2)①旋轉(zhuǎn)角為60°;②當AC=2AB時,BD′=CD′,證明詳見解析.

【解析】

試題分析:(1)容易證明⊿ABE≌⊿ADC,從而得證.(2)①由已知條件得∠BAD=60°,∠CAE=60°,所以∠DAE=60°,所以當AD′落在AE上時,旋轉(zhuǎn)角為60°.②若BD′=CD′,則必有∠D′BC=∠D′CB,又因為AB=AD′,所以有∠ABD′=∠EAC=30°,所以有∠ACD′=30°,從而發(fā)現(xiàn)AB=AC.證明的過程和上面分析的過程剛好相反,把AB=AC當作條件,利用等邊三角形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì)即可證明.

試題解析:(1)證明:∵△ABD和△ACE都是等邊三角形.

∴AB=AD,AE=AC,∠BAD=∠CAE=60°,

∴∠BAD+∠DAE=∠CAE+∠DAE,

即∠BAE=∠DAC,

在△BAE和△DAC中,

∴△BAE≌△DAC(SAS),

∴BE=CD;      4分        

(2)解:①∵∠BAD=∠CAE=60°,

∴∠DAE=180°﹣60°×2=60°,

∵邊AD′落在AE上,

∴旋轉(zhuǎn)角=∠DAE=60°;         7分

②當AC=2AB時,BD′=CD′.

理由如下:由旋轉(zhuǎn)可知,AB′與AD重合,

∴AB=BD=DD′=AD′

∴四邊形ABDD′是菱形,

∴∠ABD′=∠DBD′=∠ABD=×60°=30°

∵△ACE是等邊三角形,

∴AC=AE,∠ACE=60°,

∵AC=2AB,

∴AE=2AD′,

∴∠PCD′=∠ACD′=∠ACE=×60°=30°,

∠ABD′=∠ACD′

∴BD′=CD′        11分

考點:1、旋轉(zhuǎn)的性質(zhì);2、等邊三角形的性質(zhì);3、全等三角形的判定.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、(1)如圖1,點O是線段AD的中點,分別以AO和DO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接AC和BD,相交于點E,連接BC.求∠AEB的大小;
(2)如圖2,△OAB固定不動,保持△OCD的形狀和大小不變,將△OCD繞點O旋轉(zhuǎn)(△OAB和△OCD不能重疊),求∠AEB的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明數(shù)學成績優(yōu)秀,他平時善于總結(jié),并把總結(jié)出的結(jié)果靈活運用到做題中是他成功的經(jīng)驗之一,例如,總結(jié)出“依次連接任意一個四邊形各邊中點所得四邊形(即原四邊形的中點四邊形)一定是平行四邊形”后,他想到曾經(jīng)做過的這樣一道題:如圖1,點P是線段AB的中點,分別以AP和BP為邊在線段AB的同側(cè)作等邊三角形APC和等邊三角形BPD,連接AD和BC,他想到了四邊形ABDC的中點四邊形一定是菱形.于是,他又進一步探究:
如圖2,若P是線段AB上任一點,在AB的同側(cè)作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,連接CD,設(shè)點E,F(xiàn),G,H分別是AC,AB,BD,CD的中點,順次連接E,F(xiàn),G,H.請你接著往下解決三個問題:
(1)猜想四邊形ABCD的中點四邊形EFGH的形狀,直接回答
 
,不必說明理由;
(2)當點P在線段AB的上方時,如圖3,在△APB的外部作△APC和△BPD,其它條件不變,(1)中結(jié)論還成立嗎?說明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其它條件不變,先補全圖4,再判斷四邊形EFGH的形狀,并說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)的圖象經(jīng)過A(2,0)、C(0,12)兩點,且對稱軸為直線x=4.設(shè)頂點為點P,與x軸的另一交點為點B.
(1)求二次函數(shù)的解析式及頂點P的坐標;
(2)如圖1,在直線 y=2x上是否存在點D,使四邊形OPBD為等腰梯形?若存在,求出點D的坐標;若不存在,請說明理由;
(3)如圖2,點M是線段OP上的一個動點(O、P兩點除外),以每秒
2
個單位長度的速度由點P向點O 運動,過點M作直線MN∥x軸,交PB于點N.將△PMN沿直線MN對折,得到△P1MN.在動點M的運動過程中,設(shè)△P1MN與梯形OMNB的重疊部分的面積為S,運動時間為t秒.求S關(guān)于t的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,點C是線段AB上一動點,分別以線段AC、CB為邊,在線段AB的同側(cè)作正方形ACDE和等腰直角三角形BCF,∠BCF=90°,連接AF、BD.
(1)猜想線段AF與線段BD的數(shù)量關(guān)系和位置關(guān)系(不用證明).
(2)當點C在線段AB上方時,其它條件不變,如圖2,(1)中的結(jié)論是否成立?說明你的理由.
(3)在圖1的條件下,探究:當點C在線段AB上運動到什么位置時,直線AF垂直平分線段BD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•高新區(qū)一模)已知二次函數(shù)的圖象經(jīng)過A(2,0)、C(0,-12)兩點,且對稱軸為直線x=4,設(shè)頂點為點P,與x軸的另一交點為點B.
(1)求二次函數(shù)的解析式及頂點P的坐標;
(2)如圖1,在直線y=-2x上是否存在點D,使四邊形OPBD為等腰梯形?若存在,求出點D的坐標;若不存在,請說明理由;
(3)如圖2,點M是線段OP上的一個動點(O、P兩點除外),以每秒
2
個單位長度的速度由點P向點O運動,過點M作直線MN∥x軸,交PB于點N.將△PMN沿直線MN對折,得到△P1MN.在動點M的運動過程中,設(shè)△P1MN與梯形OMNB的重疊部分的面積為S,運動時間為t秒.問S存在最大值嗎?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案