已知關于x的一元二次方程x2+(2k-1)x+k2+1=0,如果方程的兩根之和等于兩根之積,求k的值.

解:設方程的兩根為x1,x2,
根據(jù)題意得△=(2k-1)2-4(k2+1)≥0,解得k≤-,
x1+x2=-(2k-1)=1-2k,x1x2=k2+1,
∵方程的兩根之和等于兩根之積,
∴1-2k=k2+1
∴k2+2k=0,
∴k1=0,k2=-2,
而k≤-,
∴k=-2.
分析:設方程的兩根為x1,x2,根據(jù)根的判別式得到△=(2k-1)2-4(k2+1)≥0,解得k≤-,根據(jù)根與系數(shù)的關系得到x1+x2=-(2k-1)=1-2k,x1x2=k2+1,
則1-2k=k2+1,可解得k1=0,k2=-2,然后根據(jù)k的取值范圍可確定滿足條件的k的值.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程兩個為x1,x2,則x1+x2=-,x1•x2=.也考查了一元二次方程根的判別式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2+(2k-3)x+k2=0的兩個實數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2-6x+k+1=0的兩個實數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學 來源:第23章《一元二次方程》中考題集(23):23.3 實踐與探索(解析版) 題型:解答題

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習冊答案