(2013•曲靖)如圖,將△ABC繞其中一個(gè)頂點(diǎn)順時(shí)針連續(xù)旋轉(zhuǎn)n′1、n′2、n′3所得到的三角形和△ABC的對(duì)稱關(guān)系是
關(guān)于旋轉(zhuǎn)點(diǎn)成中心對(duì)稱
關(guān)于旋轉(zhuǎn)點(diǎn)成中心對(duì)稱
分析:先根據(jù)三角形內(nèi)角和為180°得出n′1+n′2+n′3=180°,再由旋轉(zhuǎn)的定義可知,將△ABC繞其中一個(gè)頂點(diǎn)順時(shí)針旋轉(zhuǎn)180°所得到的三角形和△ABC關(guān)于這個(gè)點(diǎn)成中心對(duì)稱.
解答:解:∵n′1+n′2+n′3=180°,
∴將△ABC繞其中一個(gè)頂點(diǎn)順時(shí)針連續(xù)旋轉(zhuǎn)n′1、n′2、n′3,就是將△ABC繞其中一個(gè)頂點(diǎn)順時(shí)針旋轉(zhuǎn)180°,
∴所得到的三角形和△ABC關(guān)于這個(gè)點(diǎn)成中心對(duì)稱.
故答案為:關(guān)于旋轉(zhuǎn)點(diǎn)成中心對(duì)稱.
點(diǎn)評(píng):本題考查了三角形內(nèi)角和定理,旋轉(zhuǎn)的定義與性質(zhì),比較簡單.正確理解順時(shí)針連續(xù)旋轉(zhuǎn)n′1、n′2、n′3,就是順時(shí)針旋轉(zhuǎn)180°是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•曲靖)如圖,⊙O的直徑AB=10,C、D是圓上的兩點(diǎn),且
AC
=
CD
=
DB
.設(shè)過點(diǎn)D的切線ED交AC的延長線于點(diǎn)F.連接OC交AD于點(diǎn)G.
(1)求證:DF⊥AF.
(2)求OG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•曲靖)如圖是某幾何體的三視圖,則該幾何體的側(cè)面展開圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•曲靖)如圖,在?ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過點(diǎn)O作EF⊥AC交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE、CF.則四邊形AECF是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•曲靖)如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于
1
2
CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過點(diǎn)E作射線OE,連接CD.則下列說法錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•曲靖)如圖,直線AB、CD相交于點(diǎn)O,若∠BOD=40°,OA平分∠COE,則∠AOE=
40°
40°

查看答案和解析>>

同步練習(xí)冊(cè)答案