如下圖所示:O為正三角形ABC的中心.你能用旋轉(zhuǎn)的方法將△ABC分成面積相等的三部分嗎?如果能,畫出示意圖,并標(biāo)明使他人看得清楚的分割方案.

答案:
解析:

  解法一:連接OA、OB、OC即可得下圖.

  解法二:在AB邊上任取一點(diǎn)D,將D分別繞點(diǎn)O旋轉(zhuǎn)120°和240°得到D1、D2,連接OD、OD1、OD2即可得下圖,

  解法三:在解法二中,用相同的曲線連接OD、OD1、OD2即得可得下圖.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料并解答問題:
我國是最早了解和應(yīng)用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達(dá)哥拉斯定理”.
關(guān)于勾股定理的研究還有一個(gè)很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個(gè)正整數(shù)稱為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數(shù).
方法2:若任取兩個(gè)正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:
精英家教網(wǎng)
(3)某園林管理處要在一塊綠地上植樹,使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個(gè)全等的直角三角形組成,要求每個(gè)三角形頂點(diǎn)處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個(gè)三角形最短邊上都植6棵樹,且每個(gè)三角形的各邊長之比為5:12:13,那么這四個(gè)直角三角形的邊長共需植樹
 
棵.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新教材完全解讀 九年級數(shù)學(xué) 下冊(配北師大版新課標(biāo)) 北師大版新課標(biāo) 題型:044

如下圖所示,要把破殘的圓片復(fù)制完整,已知弧上的三點(diǎn)A,B,C.

(1)用尺規(guī)作圖法找出所在圓的圓心O;(保留作圖痕跡,不寫作法)

(2)設(shè)△ABC是等腰三角形,底邊BC=10,腰AB=6,求圓片的半徑R;(結(jié)果保留根號)

(3)若(2)中的R的值滿足m<R<n(m,n為正整數(shù)),試估算m和n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新教材完全解讀 九年級數(shù)學(xué) 下冊(配北師大版新課標(biāo)) 北師大版新課標(biāo) 題型:044

如下圖所示,在直角坐標(biāo)系中,以點(diǎn)A(,0)為圓心,以2為半徑的圓與x軸交于B,C兩點(diǎn),與y軸交于D,E兩點(diǎn).

(1)求D點(diǎn)的坐標(biāo);

(2)若B,C,D三點(diǎn)在拋物線y=ax2+bx+c上,求這條拋物線的解析式;

(3)若⊙A的切線交x軸正半軸于點(diǎn)M,交y軸負(fù)半軸于點(diǎn)N,切點(diǎn)為P,且∠OMN=30°,試判斷直線MN是否經(jīng)過所求拋物線的頂點(diǎn),說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年陜西省初中畢業(yè)生學(xué)業(yè)考試數(shù)學(xué)模擬試卷(九) 題型:044

一座拱橋的輪廓是拋物線型(如下圖所示),拱高6 m,跨度20 m,相鄰兩支柱間的距離均為5 m

(1)將拋物線放在所給的直角坐標(biāo)系中(如下圖所示),其表達(dá)式是y=ax2+c的形式.

請根據(jù)所給的數(shù)據(jù)求出a,c的值.

(2)求支柱MN的長度.

(3)拱橋下地平面是雙向行車道(正中間是一條寬2 m的隔離帶),其中的一條行車道能否并排行駛寬2 m、高3 m的三輛汽車(汽車間的間隔忽略不計(jì))?請說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我國是最早了解和應(yīng)用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達(dá)哥拉斯定理”.
關(guān)于勾股定理的研究還有一個(gè)很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個(gè)正整數(shù)稱為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=數(shù)學(xué)公式(m2-1)和c=數(shù)學(xué)公式(m2+1)是勾股數(shù).
方法2:若任取兩個(gè)正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:

(3)某園林管理處要在一塊綠地上植樹,使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個(gè)全等的直角三角形組成,要求每個(gè)三角形頂點(diǎn)處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個(gè)三角形最短邊上都植6棵樹,且每個(gè)三角形的各邊長之比為5:12:13,那么這四個(gè)直角三角形的邊長共需植樹______棵.

查看答案和解析>>

同步練習(xí)冊答案